Distributing Jump Distances in a Synthetic Disk Array Workload

Zachary Kurmas and Jeremy Zito, Grand Valley State University

el o
&7 Background
Workloads Real vs. Synthetic Traces Jump Distance
Workload traces (lists of individual 1/0O requests) Real: List of /O requests made by ” Synthetic: Generated An accurate synthetic workload must cause the disk
are often used to evaluate storage systems Where do these an application in a production randomly to maintain high level Increasing synthetic array to behave as if it were running some real
traces come from? environment. properties of a workload. workload accuracy workload (called the target F

; ii (X, 1027, 120052, 120 workload). To do so, it must
Sl (W,8192,120844,127) . .
Hi Qo T °Large ﬁ *Compact share certain key properties
| ’ ’ ’ .

11 (V. 31521120544 127) *Inflexible *Easily modified with the target workload. We
; ; (R,2048,334321,131) .] .
11 (18152, 120834 126) *Hard to find due to security issues *Contains no specific data have found that the distribution
11 (W,8192,120844,127)) . .

i (R.1024, 120032, 124) . ' ') of jump distance is one

,8192,12 ,12

gP—= Problem ==

Jump distance is an approximation of the distance the disk head moves between disk accesses, and is defined by
(startSector[x] — startSector[x-1]). Jump distance affects a storage system's behavior because the physical movement

== Qur Solution ——————————s

We generate a synthetic disk access pattern (i.e., the list of sectors accessed) by solving the Hamiltonian
Path problem that is defined by the target workload's distributions of starting sectors and jump distances.

of the disk heads is often the primary bottleneck in a storage system. To create an accurate synthetic trace, we must We first create a directed graph that contains (1) a vertex for each sector accessed, and (2) an edge
maintain not only a correct distribution of jump distances, but also a correct distribution of sectors accessed. Generating a between each pair of sectors that correspond to some jump distance in the target workload. We then
synthetic list of sectors accessed that maintains both distributions reduces to the NP-complete Hamiltonian Path problem. search for a Hamiltonian path using a depth-first search. Each Hamiltonian path corresponds to an access

‘ pattern that maintains the target workload's distribution of sectors accessed and jump distance.

A—= Algorithm

Building the Graph The Search
Using the graph of possible paths, we begin the depth-first search.
We first analyze the target workload and We then build an adjacency matrix based on the sectors
e e GET CRET GEEer e ErEREees accessed and the observed jump distances. Because the * We must first choose a starting sector. For We set sector 4 as the current sector. The search
and how often each jump distance occurs. :> target workload accesses sectors 30 and 32, we add an simplicity we use the first sector of the input. continues by looking for the first sector in the list
.30 ... For example, the workload edge between any two sectors with a jump distance of 2 --- . 2 ‘ 4 30 ‘32 42 for row 4 . In this case, 2 is the only possible path.
22 segment to the left has jump including sectors 2 and 4 from the example to the left. * Possible paths from Lijﬂ XX ﬁ> e
5 distances of 2, 10, -40, 30, 2 are 4 and 32. We 30:*X«’X = > a 5
.32 .. -2, and -26. 30 32 choose 4 ---the first _ =
.. 30.. ~— on the list. 32=+ X- X | |
Ay ? 2 49 =X NO.W lthe current sector is once again 2
! This is a problem because the synthetic
M ain LO Op workload must maintain the target
The “X’s in each row represent those workload's distribution of sectors.
2 4 R L Adding the remaining edges We then search the graph Because sector 2 is used only once in
2 {..)«()(L SO il el ellonee o ielion i for a path that will maintain Hiding a sector is simply a matter of removing its links. <: i -
I C> produces this adjacency sector listed at the head of the row. P | the (.)I’Iglna|. workload, Yve remove it from
%0 afﬁ matrix: Each row is placed in a linked list. the sector and jump For example, when o1 413013 4 the !nked lists so that it can no longer be
Y MEE AL AL ARSKIEAK distance ~distributions of sector 2 is hidden afler °* e—p Heed
&2 1X 2« K< X the target workload. ts first use, It is Vg —ry It may be the case that the search encounters a
(0 X X Y 4‘:)(* . bypassed in the linked 324v S G ﬁ> sector that has no possible paths leading from
Notice that we also added 3 X X 0K X _ X _ lists. 2 X it. For example, sector 4 no longer has a path to
an edge between 30 and 9 X ?é;x X- X A similar method of hiding is done if the maximum 2 because 2 has been hidden. This leaves no
32 because there is a jump number of jump distances is exceeded (because the possible paths from sector 4. We then
of 2 between them. A 6 GrEse el e e sme e dhe backtrack and take the next available route.
original workload). m %

L §
Backtracking % X

While backtracking, we look for possible hidden

Finish Randomly

"Finish randomly" is just what it sounds like: the random placement of those sectors "left Finish Up In our example, sector 4 is a dead end: nodes that become available. Because
over" when the search is terminated because it is not making any progress. This random Because the depth-first Synthetic workload: backtracking “adds back” sectors and jump
placement of sectors could have an adverse affect on jump distance distribution if the search may not finish in a 2 + - X elisinees, ey ey seeams avallzols agaii
_ . In our example, if there had only been one sector
number of "leftover” sectors is large. reasonable amount of time, We must then backtrack and chose the 4, it would have been hidden after it was added:
e we stop it when it fails to — next path from sector 2. Swme:ic worzload:

make progress for a set ?

546 1247 | 443 780 |2140C| 2543)| 1247 743 | 2477|8345 346 30 ,»S“"Zw & ﬁ>

4
number of iterations. We 9 ~X . =X However, when we backtracked and chose the
Lefw / o e approximation i X alternate path to sector 32, sector 4 is “added

526 | 2466|1683 [260 . L 01X P XT— back” and can then be unhidden because it no
techniques to distribute the — o ,X -y | . —
e o 32+ - onger appears in the synthetic workload.
remaining sectors. 19X | Synthetic workload:
546 1247 | 1683 443 780 |2140| 23460 | 2543 226 1247 743 2477 | 360 |8345]| 346 = 55

The next path is 32. After adding the new
path, the search continues:

Synthetic worljload: * Note that as the synthetic workload is built, we
= {ff} i may have to backtrack many times.

7" Results

Fath length as a function of I/Os analyzed Quality of synthetic disk access pattern
The important question is: How far does the algorithm get? E b 'Random ——— - Completely Random ~——
Is) Ascending £ 120 + Random —— -
L . , , = 1 * Ascending Abs, ——— 8 Ascending
Because the Hamiltonian Path problem is NP-complete, we don't expect to find a complete path in a & ~. Descending — @ Ascending Abs.
: : = _ Descending Abs. s 100 Descending —— -
reasonable amount of time. The length of the path found before the search stalls is largely s 09 = Descending Abs
_ o | | , = © LS.
determined by the order in which sectors are searched. When we build our adjacency matrix, what Ie) = |
r— : o |
happens if we change the order in which sectors are searched? = 0.8 © 4
T L)
To determine the best way to order our adjacency matrix, we add @ o7t o 50 |
sectors in one of the following ways: %;L % |
® Ascending: Examine the I/O requests in order from smallest to largest starting sector. Q 06 + c e ~—-q.ﬂ_____#,_,/
£ -— |
* Ascending absolute value: Examine the I/O requests closest to the current sector first. © ﬁ 40 | "&
. : : : S 05 =2 T r———.
* Descending: Examine the I/O requests in order from largest to smallest starting sector. = g - —— e
* Descending absolute value: Examine the I/O requests farthest away first. E 04 . ¥ . N , o . C = I . |
* Random: Assign a random order. 10 100 1000 10000 100000 1000 10000 100000
Number of I/Os analyzed and generated Number of I/Os analyzed and generated
For Example, a random ordering may >
create the following adjacency matrix: : .
The graphs to the right analyze a synthetic
2 3 &£ 2 4 k? P 9 y.ﬁ y The longest partial Hamiltonian path is created when using a random ordering of One metric used to determine the quality of a synthetic workload is “average bin
2 X X workload, as generellte.d b-y different sort sectors. The next best sort is ascending. A random ordering produces a different difference.” This is simply the difference between the number of jump distances
0 X X orders. The synthetic list is based on a “real solution every time the algorithm is run. In contrast, the other orderings produce the used in the “real” workload and those used in the synthetic workload. For example,
42 workload from an e-mail application. same results. Also, notice that a complete path is found only for workloads with less a jump distance of 2 may be found 20 times in the “real” workload, but only 12 times
32 v X X X than 100 I/Os. However, most workloads are very large, containing thousands and in the synthetic workload. This difference is calculated for every jump distance, and
¢ thousands of 1/Os. the average difference is then calculated. Once again, we see that the random and

ascending search orders produce more accurate access patterns.

AEREIEE
T XX
4{—_:'*)(30 32
NEN: X e
1) i s 2
1
24130 R @
P G |
§.X ARSE AR
0K X< X L
7. Y. X §X
"X 0 X *X< X
%- S Gl
0 X
214130 R @
) X X
§X
N XX
e, XX
0 X
ARREIEARY
) X
4
30 X AR IR
32) X X
42 i X
3 X X
e, X X
0 X

