
Generating a Jump Distance Based Synthetic Disk Access Pattern

Zachary Kurmas
Dept. of Computer Science

Grand Valley State University
kurmasz@gvsu.edu

Jeremy Zito, Lucas Trevino, and Ryan Lush
Dept. of Computer Science

Grand Valley State University
{zitoj,trevinol,lushr}@student.gvsu.edu

Abstract

As part of our research into improving synthetic, block-
level I/O workloads, we developed an algorithm that gener-
ates a synthetic disk access pattern based on given distribu-
tions of both (1) sectors accessed and (2) “jump distances”
between successive disk accesses. Generating a synthetic
disk access pattern that maintains both distributions exactly
is an NP-complete problem (similar to the Traveling Sales-
man problem). In this paper, we (1) discuss our approxima-
tion algorithm, (2) show that it runs in a reasonable amount
of time, (3) show that it reproduces both distributions with
reasonable accuracy, and (4) demonstrate its overall effect
on the quality of block-level synthetic workloads.

1. Introduction

Storage systems must be evaluated with respect to the
workloads that will be issued to them. These evaluation
workloads can come from one of two sources: (1) actual
traces of existing storage systems, or (2) synthetic work-
loads. Both approaches have strengths and weaknesses:
Traces are more accurate, but are large, inflexible, and dif-
ficult to obtain. Synthetic workloads are flexible and can be
represented compactly, but are often inaccurate. Our long-
term research goal is to improve the accuracy of synthetic
workloads, thereby allowing storage system evaluators to
use them in place of workload traces.

Improving synthetic workloads requires two steps: We
must first determine which properties a synthetic workload
should share with the “real” workload for which it will sub-
stitute (henceforth called thetarget workload). We must
then develop algorithms to produce synthetic workloads
that maintain the desired properties. We addressed step 1
previously by developing a tool, theDistiller that automat-
ically identifies those workload properties on which a syn-
thetic workload should be based [7]. The Distiller relies on
a library of properties from which to choose. This paper
addresses step 2 by adding a needed property called “Jump
Distance” to that library. Thejump distancebetween two

I/O requests is the difference between their starting sectors.
This measurement approximates how far a disk’s read/write
head must travel before serving the next request.

Section 2 provides background and further motivation.
Section 3 explains our approximation algorithm. Section 4
presents our results. Section 5 discusses future work; and,
Section 6 concludes.

2. Motivation and background

In this section, we discuss (1) the motivations for using
synthetic workloads, (2) our previous research that led us to
focus on jump distance, and (3) related work.

2.1 Why synthetic workloads

Many researchers use workload traces to evaluate storage
systems. Unfortunately, the use of traces has several limita-
tions: (1) Traces are very large. (2) Because of privacy con-
cerns, system administrators hesitate to make traces pub-
licly available. Finally, (3) traces are inflexible: It is diffi-
cult to modify them to represent expected future workloads.

The advantages of using synthetic workloads are that:
(1) They are compact. (2) Because they are specified using
only high-level parameters, they do not contain any specific
information.1 Finally, (3) they are flexible.

The challenge is that synthetic workloads are rarely ac-
curate: When used as part of an evaluation, most synthetic
workloads produce different results than thetarget work-
load. This inaccuracy results from our incomplete under-
standing of which properties a synthetic workload must
share with the target workload.

2.2 Previous work

Many existing workload synthesis techniques were devel-
oped for specific studies and are not necessarily generally

1We are hopeful that system administrators will be more willing to pro-
vide the parameters used to generate synthetic workloads than they are to
provide entire, detailed workload traces.



useful. In response, we invented the Distiller to easily
and automatically evaluate which existing generation tech-
niques produce accurate synthetic workloads for new stor-
age systems.

The Distiller does not “invent” workload properties. In-
stead, it takes as input a library of properties other re-
searchers have already invented. The Distiller may con-
clude that no subset of its library will produce a sufficiently
accurate synthetic workload. We must then add new proper-
ties to the library. The Distiller provides useful hints, but we
must do most of the work. Based on its hints, we decided to
add an improved jump distance property.

We use the difference between the starting sectors
of successive I/O requests (request[x].starting sector −
request[x − 1].starting sector) as an approximate2 mea-
sure of how far the disk head must physically move to reach
the starting sector of the next request. We call this differ-
ence thejump distancebetween requestsx − 1 andx.

An accurate synthetic workload must also maintain the
distribution of sectors used by the target workload. Gen-
erating a list of sectors that maintains given distributionof
both sectors accessed and distribution of jump distances re-
duces to the NP-complete Hamiltonian Path problem. As a
result, we must find an approximation algorithm.

2.3 Related work

The literature describes and evaluates many techniques for
generating synthetic block-level I/O workloads [1, 2, 3, 5,
10], file-level workloads and application-level I/O work-
loads. Most focus on accurately synthesizing the work-
load’s arrival pattern. Two of the few that focus primar-
ily on block-level disk access patterns are Gomez’s On/Off
technique [2, 3] and Wang’s PQRS model [10].

Hong et al. developed a generation technique that
chooses several intervals of a real trace to represent the en-
tire trace. The algorithm then generates a complete syn-
thetic trace by concatenating copies of those intervals [4,5].

This technique is highly effective in generating a syn-
thetic arrival pattern; however it fared poorly when gener-
ating the disk access pattern also, because repeating the in-
tervals chosen to represent the entire trace tended to add too
much temporal locality to the workload. We expect that our
jump distance-based generator can help address the limita-
tions of Hong’s clustering-based technique.

3. Our algorithm

Our problem is to take as input the distributions of (1)
sectors accessed by the target workload, and (2) jump dis-
tances within the target workload; then produce a synthetic

2See the extended version of this paper for details [8].

disk access pattern. Our approach is to transform the gen-
eration problem into an instance of the Hamiltonian Path
problem, then apply a brute-force, depth-first search. If the
search does not find a Hamiltonian path within a reasonable
amount of time, we take the longest path found and use ap-
proximation techniques to complete the access pattern.

We begin by generating a list of I/O requests whose start-
ing sectors exhibit the desired distribution. We then search
for an ordering of the requests by choosing an initial I/O
request (call itd1) and executing a search of possible paths
beginning withd1. If we find a valid path of lengthn, we
have found an ordering of I/O requests that maintains the
desired jump distance distribution. Unlike the Hamiltonian
Path problem, however, we must not only check that we use
each I/O request (i.e., vertex) only once;3 but, we must also
be sure we do not use a given jump distance more often than
specified by the input.

When performing a depth-first search, we must spec-
ify the order in which our algorithm examines the I/O re-
quests. We consider five orderings: (1)Ascending(small-
est to largest starting sector), (2)Ascending absolute value
(closest sectors first), (3)Descending(largest to smallest
starting sector), (4)Descending absolute value(most dis-
tant sectors first), and (5)Random.

Two factors make our brute-force approach reasonable
given the theoretical complexity of the problem: First, not
every Hamiltonian Path problem requires exponential time.
For example, it is trivial to find a Hamiltonian path in a com-
plete graph. We are hopeful that our jump distance prob-
lems will define graphs whose structures lend themselves to
quick solutions. Second, a solution need not be exact to be
useful. If the workload we are attempting to model has 10%
of its accesses with a jump distance of 1 sector, it is accept-
able for our solution to have slightly more or fewer. We will
see that this flexibility allows us to find a solution quickly.

We employ two main approximation techniques: (1) We
complete the path randomly after a given amount of back-
tracking, and (2), we allow a limited number of sectors
and/or jump distances to be used more often than specified
by their respective histograms.

In the first case, we specify how many times the depth-
first search may backtrack without finding a longer valid
path. (We call this parameter “max stall”.) If the search
backtracks too often, we terminate it, take the partially com-
pleted path, and place the remaining unused I/O requests
randomly throughout the path.

In the second case, we specify “approximation factors”
for sectors used and jump distance (for example, 10% and
15% respectively), and allow a sector to be used 10% more
often than specified by the distribution of sectors accessed.
Similarly, we allow a given jump distance to be used 15%

3Notice that we can use each I/O request once only; however, each
sector may be accessed by more than one I/O request.



more often than specified by the jump distance distribution.

4. Experimental results

We evaluated our synthetic disk access pattern genera-
tor using two different target workloads. Space constraints
allow us to discuss only one here: a one-hour trace of the
OpenMail E-mail application. (See [8] for additional re-
sults.) It has a mean request rate of 304 I/Os per second and
a mean throughput of approximately 2.33MB/s. The com-
plete workload is described in detail in [6]. This workload’s
distribution of sectors accessed makes it an interesting ex-
ample with which to test our generator. Over 78% of the
I/Os are write requests. Almost half of the write requests
access a small percentage of the sectors. The remaining
writes and all the reads are distributed much more evenly
over the sectors accessed. We suspect this distribution re-
flects differences in the accesses to the portion of the disk
array used to store meta-data, and the portion used to store
individual messages.

This workload is divided into 22logical units(LUs) —
sets of sectors that appear to clients as separate storage sys-
tems. We analyze and generate each LU separately, which
makes sense when studying jump distance because only
those jumps between requests to the same physical disk
have a significant affect on storage system behavior.

In this section, we present three analyses. First, we eval-
uate how run time, input size, and vertex ordering affect the
length of the partial Hamiltonian path found. Next, we eval-
uate the quality of the synthetic disk access patterns with
respect to the input distributions. Finally, we evaluate the
quality of the synthetic disk access patterns with respect to
the accuracy of the resulting synthetic workload.

4.1 Length of partial path

Because the Hamiltonian Path problem is NP-complete, it is
unlikely our depth-first search will find a Hamiltonian path
in a reasonable amount of time. Three factors affect the
length of a partial path: (1) the length of the trace analyzed,
(2) the amount of time we allow the search to run, and (3)
the order in which the algorithm examines vertices.

Input size: We had originally hoped that the graph
defined by the input would contain so many Hamiltonian
paths that one would be quickly discovered by a brute-force
search. Figure 1 shows that this is not the case. We ran
our algorithm several times requesting increasingly long se-
quences of I/Os4 and allowed it to run until it had not made
any progress for 10 million iterations. At that point, we
terminated it and reported the length of the longest path rel-
ative to the desired number of I/Os. We ran the algorithm

4When requestingx synthetic I/Os, we provide as input an analysis of
the firstx I/Os of our target workload.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000  10000  100000

F
ra

ct
io

n 
of

 c
om

pl
et

e 
H

am
ilt

on
ia

n 
pa

th
 fo

un
d

Number of I/Os analyzed and generated

Path length as a function of I/Os analyzed

Maximum
Median

Mean
Minimum

Figure 1. Our brute-force approach completes only
when we desire fewer than 150 I/Os.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 10  100  1000  10000  100000

F
ra

ct
io

n 
of

 c
om

pl
et

e 
H

am
ilt

on
ia

n 
P

at
h 

fo
un

d

Number of I/Os analyzed and generated

Path length as a function of I/Os analyzed

Random
Ascending

Ascending Abs.
Descending

Descending Abs.

Figure 2. A random vertex order produces the
longest partial Hamiltonian path.

separately on each LU. Figure 1 shows the maximum, min-
imum, mean, and median length of the longest path over
all LUs and vertex orderings. We can see that, for any LU
or vertex ordering, the algorithm is not able to complete
quickly once the desired number of I/Os reaches about 150.

Note that the length of the partial path found (relative
to the number of I/Os desired) dips for lengths of approxi-
mately 1,000 I/Os, then rises again. We found that the den-
sity of the graph is correlated to the length of the path found,
which makes sense because it is easiest to find Hamiltonian
paths in extremely dense and extremely sparse graphs.

Vertex ordering: The order in which the depth-first-
search examines vertices in the graph affects how long the
algorithm takes to find a Hamiltonian path. If the vertices
are searched in an extremely fortuitous order, then the algo-
rithm will find a Hamiltonian path without any backtrack-
ing. We experimented with five different orderings (ex-
plained in Section 3). Figure 2 shows how the vertex or-



dering affects the length of the path that is generated before
the algorithm goes 10 million iterations without progress.

The random vertex ordering does best when the desired
number of I/Os is large. We suspect the random vertex or-
der does best because it is less likely to “use up” sectors and
jump distances early. For example, when configured to use
the “Ascending absolute value” sort, the depth-first search
always considers the I/O requests with the current starting
sector first. As a result, the depth first search begins build-
ing a path by repeating the initial sector until either (1) that
sector is used as many times as specified in the input distri-
bution, or (2) the jump distance 0 is used as many times as
specified in the input distribution. Soon afterward, the jump
distance of 1 sector is “used up”. Small jump distances are
easy to match (i.e., there are more pairs of requests 1 sec-
tor apart than there are pairs of sectors 2,435,812 sectors
apart); thus, the two “ascending order” searches build long
paths quickly. However, once the common jump distances
have been used, the rate of progress slows. In contrast, by
examining vertices in a random order, the depth-first search
is more likely to consider less common jump distances first.
The “descending order” sorts also have this property; but
because larger jumps are harder to match, the search makes
less progress before reaching the backtracking limit.

Maximum stall: Because the depth-first search cannot
find an exact answer in a reasonable amount of time, we
must terminate the algorithm at some point and complete
the list of I/Os using approximation techniques. For our first
set of experiments, we stopped the algorithm after it had not
made any progress in 10 million iterations. Upon further in-
vestigation, however, we found that we can achieve almost
the same result while terminating the algorithm much ear-
lier. The path after 100,000 stalls was 98% the length of the
path after 10 million stalls. From these results, we have cho-
sen to run our depth first search only until it goes 1 million
iterations without producing a longer path.

4.2 Distribution quality

Our results from the previous section show that we cannot
use the depth-first search alone to generate a synthetic disk
access pattern. In this section, we evaluate two methods of
creating a complete synthetic disk access pattern: “finish
randomly” and “approximation factor.”

In both cases, we evaluate the quality of the resulting
synthetic disk access pattern by comparing its distribution
of jump distance to the input from which it was generated.
We quantify the difference between two distributions of
jump distance using the weighted average of the percent dif-
ference between each pair of corresponding bins in the two
histograms. For example, we calculate the percent differ-
ence between binx for the target workload and binx for the
synthetic workload as follows: (|htarget[x]−hsynthetic[x]|

htarget[x] ).

 20

 40

 60

 80

 100

 120

 1000  10000  100000

A
ve

ra
ge

 B
in

 D
iff

er
en

ce
 (

sm
al

lle
r 

is
 b

et
te

r)

Number of I/Os analyzed and generated

Quality of synthetic disk access pattern

Completely Random
Random

Ascending
Ascending Abs.

Descending
Descending Abs.

Figure 3. Ascending and random vertex orderings
produce best quality synthetic access patterns.

Because there is no single, universally accepted metric for
quantifying the difference between distributions, we consid-
ered five different metrics. All five exhibited similar trends;
so, in the interest of space and clarity, we choose to present
only the average bin difference.

Finish randomly: As described in Section 3, the first
option for generating a complete disk access pattern is to
wait until the search has not made any progress for the spec-
ified number of iterations, then generate the complete disk
access pattern from the partial path by placing the unused
I/O requests randomly throughout the path.

Figure 3 shows how the quality of our synthetic disk ac-
cess patterns compare to a disk access pattern produced by
choosing the sequences of sectors randomly without consid-
ering jump distance. Three of our five vertex orderings are
considerably more accurate than the “completely random”
access pattern. The descending and descending absolute
value sort orders produce progressively lower quality access
patterns as the length of the generated trace increases. We
suspect this lower quality is a result of the correspondingly
short partial paths from which the final disk access pattern
is derived. (See Figure 1.)

Approximation factor: As described in Section 3, our
second option is to allow the depth-first search to use sec-
tors and/or jump distances more often than they appear in
the target workload. We investigated different combinations
of sector and jump distance approximation factors to see (1)
which combinations allowed our depth-first search to finish
within a reasonable amount of time and (2) how the syn-
thetic disk access patterns produced compared in quality to
those produced without any approximation factors.

Table 1 shows typical results using the random vertex
ordering. Raising either approximation factor increased the
length of the partial path found, but less than we had ex-
pected. The depth-first search does not find a 98% complete



Jump Dist. Sector Count Factor
Factor 1.00 1.01 1.05 1.10 1.25 1.50 1.75 2.00
1.00 77.4 (18.6) 77.4 (18.7) 77.6 (18.3) 77.9 (18.0) 81.2 (15.0) 86.5 (10.5) 87.8 ( 9.5) 91.9 ( 6.6)
1.01 77.1 (19.1) 77.2 (19.1) 77.8 (18.1) 78.4 (17.7) 81.3 (15.0) 86.6 (10.7) 88.0 ( 9.5) 92.1 ( 6.5)
1.05 77.8 (18.9) 77.8 (18.8) 78.1 (18.5) 78.7 (17.9) 81.8 (15.2) 87.2 (11.0) 88.8 ( 9.8) 92.5 ( 7.5)
1.10 77.7 (19.6) 77.7 (19.7) 78.4 (18.9) 79.1 (18.3) 82.6 (15.5) 88.1 (11.8) 89.8 (10.6) 93.8 ( 8.0)
1.25 79.7 (19.8) 79.7 (19.7) 80.5 (19.3) 80.1 (20.0) 85.4 (17.0) 91.1 (13.7) 92.8 (12.9) 95.9 (12.6)
1.50 83.5 (19.8) 83.4 (19.9) 84.0 (19.8) 84.5 (20.2) 88.9 (19.5) 95.1 (18.2) 98.0 (20.1) 99.4 (20.1)
1.75 84.2 (23.0) 84.3 (23.0) 85.5 (22.7) 87.0 (23.0) 91.8 (22.0) 98.3 (25.1) 98.9 (25.8) 99.6 (25.8)
2.00 91.0 (23.8) 91.1 (23.8) 91.6 (24.2) 92.3 (24.2) 98.5 (23.3) 100.0 (24.4) 100.0 (24.8) 100.0 (24.6)

Table 1. Length (left, as a percentage) and quality (in paren theses, lower is better) of disk access pattern
generated using approximation factors.

Hamiltonian path until at least one of the approximation fac-
tors is 1.5. Fortunately, increasing the approximation factor
decreases the quality of the synthetic disk access pattern by
at most 50%.

4.3 Synthetic workload quality

Measuring the quality of the output distributions is useful
because it tells us how well our generation algorithm repro-
duces the pattern it is designed to reproduce. However, the
output distributions are merely “cosmetic” similarities be-
tween the target and synthetic workloads: They tell us noth-
ing about the usefulness of the resulting synthetic workload.

In this section, we measure the usefulness of our syn-
thetic disk access generator in producing accurate synthetic
workloads. We will issue both the target and synthetic
workloads to a storage system and measure the resulting
distribution of response time (the percentage of I/Os that
complete quickly and the percentage of I/Os that complete
slowly). Then, we use three metrics to quantify the differ-
ence between the two distributions:

Mean response time: A synthetic workload should have
a mean response time similar to the workload it models;
however, two workloads with very different behaviors can
have similar mean response times. We express this metric
as the percent difference between the mean response times
of the compared workloads.

Root-mean-square: RMS is the root mean square of the
horizontal distance between cumulative distribution func-
tions of response time. We express this metric as a percent-
age of the mean response time of the target workload. RMS
is the metric used in the related work (e.g., [1], [9]).

Log area: The log area metric is the area between two
CDFs plotted with a log scale on thex-axis. This met-
ric more accurately reflects the similarity of the workload’s
overall performance, but de-emphasizes differences most
noticeable to the user.

We use the Pantheon disk array simulator to simulate the
execution of our workloads [11]. Pantheon simulates disk
arrays comprising several disks connected to one or more
controllers by parallel SCSI busses. The controllers have

Workload MRT RMS Log area
Completely Random 15% 32% 6%
Ascending 1% 3% 1%
Ascending Abs. 9% 18% 4%
Descending 3% 6% 2%
Descending Abs. 13% 27% 6%
Random 11% 23% 5%

Table 2. Accuracy of synthetic workloads.

large non-volatile-RAM caches. (This general architecture
is similar to the FC-60 used in [7].) Pantheon provides many
additional configuration parameters including number and
type of component disks, and size of cache.

In order to observe the effects of our synthetic disk ac-
cess pattern only, we modified the target workload to be
read-only, have a constant request size of 8KB, and issue
precisely 328 I/Os every second. Attempting to evaluate
our disk access pattern in the context of the original work-
loads is difficult because the correlations between sectors
accessed and whether those accesses are reads and writes
have a large effect on storage systems with a write back
cache (like the FC-60). Fixing the values for those I/O pa-
rameters not under study eliminates this problem [1].

Table 2 shows the performance of our modified workload
as compared to synthetic workloads generated using various
sort orders. For comparison, we also show the performance
of a workload in which the sequence of sectors accessed is
chosen randomly without regard to jump distance.

We can see that, although using a random sort order pro-
duces the longest Hamiltonian path, it does not produce
the best synthetic workload from a performance standpoint.
Neither does the ascending absolute value sort order, which
produced the disk access pattern with the lowest average
bin difference. We suspect the differences in performance
are caused by differing amounts of temporal locality in the
synthetic workload. Our algorithm is designed to reproduce
only jump distances; however, different sort orders produce
differing amounts of temporal locality (as explained in Sec-
tion 4.1). Pantheon’s log files showed that synthetic work-
loads based upon a random sort order had cache hit rates



that are 2.7% lower than that of the target workload. In
contrast, the most accurate synthetic workload has a cache
hit rate close to that of the target workload. Searching sec-
tors in ascending order implicitly maintains temporal local-
ity by considering the same sectors first. The performance
of the workload based upon a descending sort order falls
in the middle: Again, examining the same sectors first pro-
duces temporal locality; however, because the partial paths
are shorter, the distribution of jump distance is not as accu-
rate as the workload based on an ascending order.

The results above show how the generation of accurate
synthetic workloads still requires some trial and error. Inthe
case of our E-mail workload, two reasonable metrics (par-
tial path length generated and average bin difference) sug-
gested using the random and ascending absolute value sort
orders, respectively. Further investigation, however, sug-
gested that the ascending sort order produced the most ac-
curate synthetic workload. This situation further supports
the need for a tool like the Distiller, which can evaluate the
effectiveness of several different generation techniques.

5. Future work

There are many aspects of our synthetic disk access gen-
erator that we have yet to investigate. Most immediately, we
plan to investigate techniques for specifying several small
graphs instead of one large graph, which will hopefully in-
crease the length of the partial paths found as well as re-
duce the overall memory requirements. One idea, similar
to analyzing each LU separately, is to analyze ranges of the
storage system’s address space separately, then use a tran-
sition matrix to choose the different address ranges when
generating a synthetic access pattern.

We also plan to add our generator to the Distiller’s library
of workload analysis and generation techniques. Once it is a
part of the Distiller’s library, we can evaluate the usefulness
of our jump distance generator when combined with other
synthetic workload techniques, such as those that accurately
reproduce arrival time patterns, or those that address corre-
lations between I/O request parameters.

6. Conclusions

We have shown that, in a reasonable amount of time, we
can generate a synthetic disk access pattern that maintains
both a specified distribution of sectors accessed and a spec-
ified distribution of jump distance within a reasonable mar-
gin of error. Not only is the resulting synthetic workload
“cosmeticly” similar to the workload it is intended to model,
but it is also more accurate than synthetic workloads using
more traditional generation techniques.

Acknowledgments

This research was begun as part of Hope College’s summer
REU program, and continued through a grant from the Re-
search and Development office at Grand Valley State Uni-
versity. In addition to our supporters, we wish to thank our
colleagues at Hope College for a wonderful summer, Carl
Strebel for top-notch system support, and our friends in the
Storage Systems Department at HP Labs, who provide en-
couragement and feedback.

References

[1] G. R. Ganger. Generating representative synthetic work-
loads: An unsolved problem. InProceedings of the Com-
puter Measurement Group Conference, pages 1263–1269,
December 1995.

[2] M. E. Gomez and V. Santonja. A new approach in the
analysis and modeling of disk access patterns. InPerfor-
mance Analysis of Systems and Software (ISPASS 2000),
pages 172–177. IEEE, April 2000.

[3] M. E. Gomez and V. Santonja. A new approach in the mod-
eling and generation of synthetic disk workload. InPro-
ceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunica-
tion Systems, pages 199–206. IEEE, 2000.

[4] B. Hong and T. Madhyastha. The relevance of long-range
dependence in disk traffic and implications for trace synthe-
sis. Technical report, University of California at Santa Cruz,
2002.

[5] B. Hong, T. Madhyastha, and B. Zhang. Cluster-based in-
put/output trace synthesis. Technical report, Universityof
California at Santa Cruz, 2002.

[6] K. Keeton, A. Veitch, D. Obal, and J. Wilkes. I/O charac-
terization of commercial workloads. InProceedings of 3rd
Workshop on Computer Architecture Support using Com-
mercial Workloads (CAECW-01), January 2001.

[7] Z. Kurmas, K. Keeton, and K. Mackenzie. Iterative distil-
lation of I/O workloads. InProceedings of the 11th Inter-
national Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2003.

[8] Z. Kurmas, J. Zito, L. Trevino, and R. Lush. Generating a
jump distance based synthetic disk access pattern. Technical
Report GVSU-CIS-2006-01, Grand Valley State University,
2006.

[9] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling.IEEE Computer, 27(3):17–29, March 1994.

[10] M. Wang, A. Ailamaki, and C. Faloutsos. Capturing the
spatio-temporal behavior of real traffic data. InPerformance
2002, 2002.

[11] J. Wilkes. The Pantheon storage-system simulator. Tech-
nical Report HPL–SSP–95–14, Storage Systems Program,
Hewlett-Packard Laboratories, Palo Alto, CA, December
1995.


