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Abstract

As part of our on-going research into improving the qual-
ity of synthetic, block-level I/O workloads, we have devel-
oped an algorithm that generates a synthetic (i.e., random)
disk access pattern based on both (1) a given distribution
of sectors accessed and (2) a given distribution of “jump
distances” between successive disk accesses. Generating
a synthetic disk access pattern that maintains both distri-
butions exactly is an NP-complete problem (similar to the
Traveling Salesman problem). In this paper, we (1) dis-
cuss our approximation algorithm, (2) show that it runs
in a reasonable amount of time, (3) show that it repro-
duces both distributions with reasonable accuracy, and (4)
demonstrate its overall effect on the quality of block-level
synthetic workloads.

1. Introduction

Storage systems, such as disk arrays, must be evalu-
ated with respect to the workloads that will be issued to
them. These evaluation workloads can come from one of
two sources: (1) actual traces of existing storage systems in
action, or (2) synthetic (i.e., random) workloads generated
based on a set of desired workload properties (such as per-
centage of requests that are reads, mean request size, etc.).
Both approaches have strengths and weaknesses: Traces
are more accurate, but are large, inflexible, and difficult to
obtain. Synthetic workloads are flexible and can be repre-
sented compactly, but are often inaccurate.

Because evaluations conducted using synthetic work-
loads often do not yield the same results as evaluations con-
ducted using traces of “real” workloads, it can be difficult
to apply results obtained using synthetic workloads to “real
world” situations. Our long-term research goal is to im-
prove the accuracy of synthetic workloads enough that stor-

age system evaluators can use them in place of workload
traces.

Improving synthetic workloads requires two steps: We
must first determine which properties a synthetic workload
should share with the “real” workload for which it will sub-
stitute (henceforth called thetarget workload). We must
then develop algorithms to produce synthetic workloads
that maintain the desired properties. We addressed step 1
previously by developing a tool, called theDistiller that au-
tomatically identifies those workload properties on which
a synthetic workload should be based [12, 13]. The Dis-
tiller relies on a library of workload properties from which
to choose. This paper addresses step 2 by adding a needed
property called “Jump Distance” to the Distiller’s library.
The jump distancebetween two I/O requests is the differ-
ence between their starting sectors. This measurement ap-
proximates how far a disk’s read/write head must travel be-
fore serving the next request.

Section 2 provides background and further motivates the
use of synthetic workloads and our study of jump distance.
Section 3 explains our approximation algorithm. Section 4
presents our results. Section 5 discusses future work; and
Section 6 concludes.

2. Motivation and background

In this section, we discuss (1) the motivations for using
synthetic workloads, (2) our previous research that led us
to focus on jump distance, (3) reasons for basing synthetic
workloads on jump distance, (4) the reasons generating a
disk access pattern that includes jump distance is not trivial,
and (5) related work.

2.1 Why synthetic workloads

Storage systems (and proposed storage system designs) can
be evaluated only in the context of a specific workload [3,



4]. For example, most storage systems contain a cache that
reduces the number of I/O requests that access the physical
disks. A hypothetical, newly developed cache replacement
algorithm may improve the performance of a storage system
when it serves a database, but degrade the performance of
the same system when used with a file server.

Many researchers use workload traces to evaluate stor-
age systems. They monitor a storage system in a production
environment, collect all the requests made of that system,
then issue those requests to the system under test. This use
of traces is beneficial because it is accurate: It indicates pre-
cisely how the system under test will perform when issued
the traced workload.

Unfortunately, the use of traces has several limitations:
(1) Workload traces are very large (from hundreds of
megabytes to tens of gigabytes), which can make them dif-
ficult to obtain, store, and share. (2) Many system adminis-
trators are concerned that, even with the actual data itselfre-
moved, traces will reveal valuable information to competi-
tors; therefore, they hesitate to make them publicly avail-
able. Finally, (3) traces are inflexible: It is difficult to mod-
ify them to represent expected future workloads.

The advantages of using synthetic workloads are that (1)
they are compact. They can be specified using only the pa-
rameters to the algorithm that generates them (e.g., the de-
sired percentage of reads). In contrast, a workload trace
contains the individual values for each I/O request. A one-
hour trace can contain millions of requests. (2) Because
they are specified using only high-level parameters, syn-
thetic workloads do not contain any specific information.
We are hopeful that system administrators will be more
willing to provide the parameters used to generate synthetic
workloads than they are to provide entire, detailed workload
traces. Finally, (3) synthetic workloads are flexible. For ex-
ample, one can produce a synthetic workload with a higher
percentage of read requests by simply changing that param-
eter. In contrast, simple methods of changing a workload
traces read percentage, such as changing write requests to
read requests, may have unknown secondary affects on the
evaluation results (e.g., if the set of sectors read to, and writ-
ten from, are disjoint).

The challenge in using synthetic workloads is that they
are rarely accurate. When used as part of a storage sys-
tem evaluation, a perfectly accurate synthetic workload will
produce the same results as thetarget workload. In order
for a synthetic workload to be accurate, it must share cer-
tain properties with the target workload. In particular, it
must share those properties that affect how the storage sys-
tem will behave when serving the workload. For example,
a synthetic workload must maintain not only the same I/O
rate as the workload it models, but it must also maintain a
similar number and intensity of bursts so similar queues of
I/Os build up on the storage system under both loads.

2.2 The Distiller

Many existing workload synthesis techniques were devel-
oped for specific studies and are not necessarily generally
useful. In response, we invented the Distiller to easily
and automatically evaluate which existing generation tech-
niques produce accurate synthetic workloads for new stor-
age systems.

The Distiller does not “invent” workload properties. In-
stead, it takes as input a library of properties other re-
searchers have already invented. The Distiller may con-
clude that no subset of its library will produce a sufficiently
accurate synthetic workload. We must then add new proper-
ties to the library. The Distiller provides useful hints, but we
must do most of the work. Based on its hints, we decided to
add an improved jump distance property.

2.3 Jump Distance

Both our understanding of storage systems and the results of
evaluating the Distiller led us to implement a jump distance-
based disk access pattern generator. Logically, we expect
the amount of disk head movement to affect disk array be-
havior because physical movement of any kind tends to pro-
duce bottlenecks in computer systems. Empirically, the Dis-
tiller found that our set of workload properties did not define
a disk access pattern that was similar enough to the target
workload to be useful. Simplistic means of measuring and
reproducing disk head movement noticeably improved the
quality of the resulting synthetic workloads. We believe fur-
ther improvements in our techniques of measuring and re-
producing disk head movements will lead to continued im-
provement in the quality of our synthetic workloads.

We use the difference between the starting sectors of
successive I/O requests (i.e.,request[x].starting sector−
request[x − 1].starting sector) as an approximate mea-
sure of disk head movement. We call this difference the
jump distancebetween requestsx − 1 and x. At a high
level, the jump distance is a measure of how far the disk
head must physically move to reach the starting sector of
the next request. When specifying a synthetic workload, we
use the distribution of jump distance as one of the parame-
ters.

Notice, however, that the distribution of jump distance is
only an approximate measure of disk head movement:

• The actual head movement, if any, is from theendof
requestx − 1 to the beginning of requestx. (Most
people use the term “jump distance” to refer to the dif-
ference between theendof requestx − 1 and the be-
ginning of requestx.)

• Requestsx − 1 andx may lie on the same track. This
situation causes rotational delay instead of disk head
movement.



• Requestx may already be in cache, resulting in no disk
head movement.

• In a large storage system, requestsx andx− 1 may be
on separate physical disks.

These approximations either (1) have a small effect on
the quality of the resulting synthetic workload, or (2) are
compensated for by other aspects of the Distiller. During
our evaluations of the Distiller, we found that the correla-
tion between an I/O request’s starting sector and its size
had very little effect on disk array behavior, which sug-
gests that calculating jump distance using starting sectors
only is a reasonable approximation. Second, the precise ef-
fects of the jump (disk head movement or rotational latency)
are not important, as long as both the synthetic and target
workloads induce the same behavior on the storage system.
Third, the Distiller is responsible for finding all necessary
workload properties, including a property that will gener-
ate workloads with similar cache behavior. Thus, our jump
distance generation algorithm need not explicitly address
whether a request is in the cache. Finally, when generating
a synthetic workload for a storage system with many phys-
ical disks, we can divide the address space according to the
physical disks onto which each sector corresponds, then an-
alyze the different sections of the address space separately.

2.4 Challenges

In addition to the distribution of jump distances, an accurate
synthetic workload must also maintain the distribution of
sectors used by the workload being modeled. Today, typical
storage systems contain over a billion addressable sectors
(i.e., a terabyte or more of data); however, many workload
traces access only a small fraction of those sectors during
the course of an evaluation. If we were to generate a syn-
thetic disk access pattern without regard to the actual dis-
tribution of sectors accessed, the synthetic workload would
likely have much different cache behavior than the target
workload it is intended to model.

The problem of generating a list of sectors accessed that
maintains both a given distribution of sectors accessed and
a given distribution of jump distances between successive
disk accesses reduces to the NP-complete Hamiltonian Path
problem (a form of the Traveling Salesman problem). As
a result, we must find a sufficiently accurate approximation
algorithm.

These challenges illustrate another use for the Distiller:
As the number of desired workload properties increases,
so do the difficulties associated with generating a syn-
thetic workload that maintains all desired properties (which
is why synthetic workloads do not simply maintain ev-
ery imaginable property). The Distiller helps alleviate this
problem by (1) limiting the number of properties that must

be maintained simultaneously, and (2) attempting to choose
properties that can easily be maintained simultaneously.

2.5 Related work

The literature describes and evaluates many techniques for
generating synthetic block-level I/O workloads [5, 6, 7, 8,9,
16, 17], file-level workloads [1, 2, 15] and application-level
I/O workloads [10]. Most focus on accurately synthesizing
the workload’s arrival pattern. Two of the few that focus
primarily on block-level disk access patterns are Gomez’s
On/Off technique and Wang’s PQRS model.

Gomez et. al. generate a synthetic disk access pattern
by mimicking the behavior of individual processes [6, 7].
Each process is assumed to be very active for an “on” pe-
riod, then inactive during an “off” period. During its “on”
period, a process chooses the starting sector of each I/O in
one of three ways (1) sequential to the previous I/O, (2)
equal to the starting sector for the first I/O in the current
“on” period, or (3) spatially local to (i.e., within 500 sectors
of) the starting sector for the current “on” period. This gen-
eration technique assumes that the trace of the I/O work-
load being modeled identifies the process that issued each
request and that these processes generate I/Os in an on/off
pattern. In contrast, our technique requires only the list of
requests made to the storage system. It also does not make
any assumptions about the behavior of the workload it is
attempting to reproduce.

Wang, et al., developed an attribute that “captures all
the characteristics of real spatio-temporal traffic” [16].In
other words, this technique strives to not only reproduce the
burstiness of the access pattern and the arrival pattern, but
also to reproduce the correlations between them. The PQRS
algorithm measures four parameters (p, q, r, ands) that are
based on the joint entropy of the sectors accessed and ar-
rival time values. The corresponding generation technique
then uses these values to recursively construct a joint dis-
tribution for sectors accessed and arrival time. To fit with
the Distiller’s model of workload analyzers and generators,
we desire at present a technique that maintains disk access
patterns only.

Hong, Madhyastha, and Zhang developed a generation
technique that chooses several intervals of a real trace to
represent the entire trace. The algorithm then generates a
complete synthetic trace by concatenating copies of those
intervals [8, 9].

This technique is highly effective in generating a syn-
thetic arrival pattern; however it fared poorly when gen-
erating the disk access pattern also, because repeating the
intervals chosen to represent the entire trace tended to add
too much temporal locality to the workload. We expect that
combining our jump distance-based generator will help ad-
dress the limitations of Hong’s clustering-based technique.



3. Our algorithm

Our problem is to take as input (1) the distribution of
sectors accessed by the target workload, (2) the desired dis-
tribution of jump distances within the target workload, and
(3) the desired number of I/Os; then produce as output a
synthetic disk access pattern.

Our approach is to transform the generation problem into
an instance of the Hamiltonian Path problem, then apply a
brute-force, depth-first search. The resulting path defines
the sequence of starting sectors. If the search does not find
a Hamiltonian path within a reasonable amount of time, we
take the longest path found and use approximation tech-
niques to complete the access pattern. The approximation
techniques do not produce an exact solution (i.e., a sequence
of sectors that precisely maintains the desired distributions);
however, Section 4 will show the approximate solution is
usefully accurate.

We begin by generating a list of I/O requests whose start-
ing sectors exhibit the distribution given as input. This
distribution is presented as a histogram — an array in
which the value at indexx (i.e, h[x]) tells what fraction
of I/O requests havex for a starting sector. To generate
num requests I/O requests with the same distribution, we
createh[x]·num requests I/O requests for each value ofx.
The problem is now to find an ordering of the requests that
exhibits the distribution of jump distances specified by the
input. This problem is similar to the famous Hamiltonian
Path problem.

The Hamiltonian Path problem is as follows: Given a
graphG, do there exist two verticesva andvb such that there
is a path fromva to vb that visits each vertex inG exactly
once? This problem is NP-complete; the fastest known al-
gorithm is not much faster than a depth-first-search through
the set of possible paths.

A depth-first search for a Hamiltonian path would pro-
ceed as follows: First, order the vertices. (We’ll label them
v1 throughvn.) Second, choose a starting vertex. (We’ll
choosev1.) Now, build the path iteratively. During each
iteration, choose the adjacent vertex with the lowest index
that does not yet appear in the path. For example, ifv1 is
adjacent to verticesv3, v6, andv10, choosev3 and append
it to the path. If at any point, all the vertices adjacent to the
vertex currently at the end of the path already appear in the
path, backtrack. For example, if there were no previously
unvisited vertices adjacent tov3, we would removev3 from
the end of path and replace it withv6 (because of all vertices
adjacent tov1, v6 has the next-lowest index).

We cast our generation problem as a Hamiltonian Path
problem on a directed graph. We add one vertex for each I/O
request. We then add an edge between two vertices if the
jump distance between them appears in the jump distance
histogram. For example, given accessesd1 with starting

sector47 andd2 with starting sector59, we add the edge
(d1, d2) if, and only if, the jump distance histogram bin 12
is not empty.

We can now search for an ordering of the requests by
choosing an initial I/O request (call itd1), then executing
a depth-first-search of possible paths beginning withd1. If
we find a valid path of lengthn, we have found an order-
ing of I/O requests that maintains the desired jump distance
distribution. Unlike the Hamiltonian Path problem, how-
ever, we must not only check that we use each I/O request
(i.e., vertex) only once;1 but, we must also be sure we do
not use a given jump distance more often than specified by
the histogram. In other words, even though there may be
many edges in the graph that correspond to a jump distance
of j, we must make sure that the number of such edges used
does not exceed the fraction specified by the input. (In this
regard, our problem is not strictly a Hamiltonian Path prob-
lem — it is a “harder” problem.2)

When performing a depth-first search, we must specify
the order in which our algorithm examines the I/O requests.
We consider five orderings:

1. Ascending: Examine the I/O requests in order from
smallest to largest starting sector.

2. Ascending absolute value: Examine the I/O requests
closest to the current sector first.

3. Descending: Examine the I/O requests in order from
largest to smallest starting sector.

4. Descending absolute value: Examine the I/O requests
farthest away first.

5. Random: Assign a random order.

Two factors make our brute-force approach reasonable
given the theoretical complexity of the problem: First, not
every Hamiltonian Path problem requires exponential time.
For example, it is trivial to find a Hamiltonian path in a
complete graph (a graph in which every pair of vertices are
adjacent), regardless of its size. We are hopeful that our
jump distance problems will define graphs whose structures
lend themselves to quick solutions. Second, a solution need
not be exact to be useful. If the workload we are attempting
to model has 10% of its accesses with a jump distance of 1
sector, it is acceptable for our solution to have slightly more
or fewer. We will see that this flexibility allows us to find a
solution considerably faster (in practice, not in theory).

We employ two main techniques for obtaining approxi-
mate solutions quickly:

1Notice that we can use each I/O request once only; however, each
sector may be accessed by more than one I/O request. Thus, sectors may
be used more than once.

2Both versions of the problem are NP-complete; thus, our version is
not “harder” in the formal sense.



1. We complete the path randomly after a given amount
of backtracking, and

2. We allow a limited number of sectors and/or jump dis-
tances to be used more often that specified by their re-
spective histograms.

In the first case, we specify how many times the depth-
first search may backtrack without finding a longer valid
path. (We call this parameter “max stall”.) If the search
backtracks too often, we terminate it, take the partially com-
pleted path, and place the remaining unused I/O requests
randomly throughout the path. This maintains the desired
distribution of sectors visited, but can produce a jump dis-
tance histogram that differs from the one specified.

In the second case, we specify “approximation factors”
for sectors used and jump distance (for example, 10% and
15% respectively), and allow a sector to be used 10% more
often than specified by the distribution of sectors accessed.
Similarly, we allow a given jump distance to be used 15%
more often than specified by the jump distance distribution.
This technique allows the search to find longer paths, but
produces a solution where both the distribution of sectors
used and the distribution of jump distances differ from the
distributions given as input.

In the next section, we will evaluate how our choices for
max stall and the approximation factor affect the quality of
our synthetic disk access patterns.

4. Experimental results

We evaluated our synthetic disk access pattern genera-
tor using two different target workloads: E-mail and OLTP.
Both workloads are divided intological units(LUs) — sets
of sectors that appear to clients as a separate storage sys-
tems. The E-mail workload contains 22 LUs; OLTP con-
tains 38. For this paper, we analyze and generate each
LU separately. Analyzing each LU separately makes sense
when studying jump distance, because only those jumps be-
tween requests to the same physical disk have a significant
affect on storage system behavior. In addition, analyzing the
LUs separately helps reduce the size of the resulting graphs.

E-mail: Our first workload to model is a one-hour trace
of the workload created by the OpenMail e-mail applica-
tion. It has a mean request rate of 304 I/Os per second and
a mean throughput of approximately 2.33MB/s. The com-
plete workload is described in detail in [11]. This work-
load’s distribution of sectors accessed makes it an interest-
ing example with which to test our generator. Over 78% of
the I/Os are write requests. Among the write requests, al-
most half access a small percentage of the sectors. The re-
maining writes and all the reads are distributed much more
evenly over the sectors accessed. We suspect this distribu-
tion reflects differences in the accesses to the portion of the

disk array used to store meta-data, and the portion used to
store individual messages.

OLTP: Our second workload to model is a 1994 on-
line transaction processing (OLTP) trace that measures HP’s
Client/Server database application running a TPC-C-like
workload at about 1150 transactions per minute on a 100-
warehouse database. It has a mean request rate of 537 I/Os
per second and a throughput of approximately 1.35 MB/s.
Approximately 50% of the requests are reads. This work-
load is interesting to study because several of the LUs con-
tain the database’s log. Accesses to these LUs tend to be
highly sequential. In addition, this workload’s higher read
percentage and I/O rate provide a useful contrast to the E-
mail workload.

In this section, we present four analyses. First, we eval-
uate how many I/O requests we can analyze and generate
given the 512MB of RAM on the machines available to
us. Next we evaluate how run time, input size, and vertex
ordering affect the length of the partial Hamiltonian path
found. Third, we evaluate the quality of the synthetic disk
access patterns with respect to the input distributions. Fi-
nally, we evaluate the quality of the synthetic disk access
patterns with respect to the accuracy of the resulting syn-
thetic workload.

For the experiments below, we have our analyzer (the
tool that produces the input histogram) analyze as many
I/Os as we request be generated. For example, when gener-
ating 25,000 requests, we analyze the first 25,000 requests
of the workload being modeled. The characteristics of
many production workloads change slightly from minute to
minute. As a result, we do not expect a synthetic workload
of lengthx to have behavior identical to the target workload
of lengthy. Therefore, it is difficult to evaluate the accu-
racy of the synthetic workload unless it models a production
workload of the same length.

4.1 Memory requirements

Our algorithm defines a graph that grows as much as
quadratically with respect to the number of I/Os analyzed.
Before designing other experiments, we must first investi-
gate how many I/Os we can analyze in a timely manner us-
ing our equipment.

Figure 1 shows that each of the E-mail workload’s 22
LUs require at most 428MB of RAM to store the graph.
Other data structures bring the entire memory requirements
to just under 800MB — a reasonable size given today’s
technology. In contrast, Figure 2 shows that at least one of
the OLTP workload’s LUs needs more than 2GB of RAM
to analyze and generate only 32768 requests. Only 6 of 38
LUs require less than 512MB of RAM to analyze 32768
I/Os, and only 6 require fewer than 2GB to analyze 65536
I/Os. In fact, analyzing the entire OLTP workload requires
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Figure 1. No E-mail LU requires more than 428MB of
RAM to store the edges in the graph.
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Figure 2. With only 4GB of RAM, we cannot analyze
more than 32,000 OLTP I/Os at one time.

30GB of RAM just to store the graph!
To address the large memory requirement of the OLTP

workload, we either (1) examine at most the first 16384 I/Os
from each LU, or (2) divide each LU into 6 equal parts. No
part of any LU requies more than 2GB of RAM. We divide
the workload by sector number: I/Os with sectors in the
16th percentile, I/Os with sectors in the 16th through 33rd
percentile, I/Os with sectors in the 34th through 40th per-
centile, etc. This division makes more sense than dividing
the workload by time because jumps between I/Os in differ-
ent parts are large enough to require substantial disk head
movement that need not be maintained precisely. All jumps
between two different parts affect the disk approximately
the same way, whereas jumps between I/Os in the same part
can have very different effects depending on whether the
jump keeps the disk heads on the same track and/or cylin-
der.

4.2 Length of partial path

Because the Hamiltonian Path problem is NP-complete, it is
unlikely our depth-first search will find a complete Hamil-
tonian path in a reasonable amount of time. Three factors
affect how long of a partial path is generated: (1) the length
of the trace analyzed, (2) the amount of time we allow the
depth-first search to run, and (3) the order in which the al-
gorithm examines vertices.

4.2.1 Input size

We had originally hoped that the graph defined by the input
would be dense enough to contain many Hamiltonian paths,
one of which would be quickly discovered by a brute-force
search. Figures 3 and 4 show that this is not the case. We ran
our generation algorithm several times requesting increas-

ingly long sequences of I/Os. We allowed the algorithm to
run until it had not made any progress during the previous
10 million iterations. At that point, we terminated the algo-
rithm and measured the length of the longest path created
and reported that length relative to the desired number of
I/O requests. We ran the algorithm separately on each LU.
Figures 3 and 4 show the maximum, minimum, mean, and
median length of the longest path over all LUs and vertex
orderings. (When analyzing the use of the random vertex
ordering, we took the average over 10 executions using 10
different random seeds.) We can see that, for any LU or ver-
tex ordering, the algorithm is not able to complete quickly
once the desired number of I/Os reaches about 150.

Notice that the length of the partial path found (relative
to the number of I/Os desired) dips for lengths of approxi-
mately 1,000 I/Os, then rises again. Figures 5 and 6 show
that the density of the graphs we are searching is correlated
to the length of the path found. This correlation makes sense
because it is easiest to find Hamiltonian paths in extremely
dense and extremely sparse graphs.

4.2.2 Vertex ordering

The order in which the depth-first-search examines ver-
tices in the graph affects how long the algorithm takes to
find a Hamiltonian path. If the vertices are searched in
an extremely fortuitous order, then the algorithm will find
a Hamiltonian path without any backtracking. We exper-
imented with five different orderings (explained in Sec-
tion 3). Figures 7 and 8 show how the vertex ordering af-
fects the length of the path that is generated before the algo-
rithm goes 10 million iterations without producing a longer
path.

With the OpenMail workload, the random vertex order-
ing does best when the desired number of I/Os is large –
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Figure 3. Our brute-force approach completes only
when we desire fewer than 150 E-mail I/Os.
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Figure 4. Our brute-force approach completes only
when we desire fewer than 150 OLTP I/Os.
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Figure 5. Higher density produces longer partial
Hamiltonian paths (E-mail).
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Figure 7. A random vertex order produces the longest
partial Hamiltonian path for E-mail.
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Figure 8. A random vertex order produces the longest
partial Hamiltonian path for OLTP.



slightly better than both ascending sorts. We suspect the
random vertex order leads to the longest partial Hamiltonian
paths because it is less likely to “use up” sectors and jump
distances early. (“Using up” sectors and jump distances
causes backtracking.) For example, when configured to use
the “Ascending absolute value” sort, the depth-first search
always considers the I/O requests with the current starting
sector first. As a result, the depth first search begins build-
ing a path by repeating the initial sector until either (1) that
sector is used as many times as specified in the input distri-
bution, or (2) the jump distance 0 is used as many times as
specified in the input distribution. Soon afterward, the jump
distance of 1 sector is “used up”. Small jump distances
are easy to match (i.e., there are more pairs of requests 1
sector apart than there are pairs of sectors 2,435,812 sec-
tors apart); thus, the “ascending order” searches build long
paths quickly. However, once the common jump distances
have been used, the rate of progress slows. In contrast, by
examining vertices in a random order, the depth-first search
is more likely to consider less common jump distances first.
The “descending order” sorts also have this property; but
because larger jumps are harder to match, the search makes
less progress before reaching the backtracking limit.

4.2.3 Maximum Stall

Because the depth-first search cannot find an exact answer
in a reasonable amount of time, we must terminate the al-
gorithm at some point and complete the list of I/Os using
approximation techniques. For our first set of experiments,
we stopped the algorithm after it had not made any progress
in 10 million iterations. Upon further investigation, how-
ever, we found that we can achieve almost the same result
while terminating the algorithm much earlier. When gen-
erating full E-mail LUs, on average, the path after 100,000
stalls was 99% the length of the path after 10 million stalls.
Furthermore, among all LUs, orderings, and random seeds,
only 1.5% of the experiments produced a path after 100,000
stalls that was less than 90% the length of the path after
10 million stalls. Similarly, when generating 8192 TPC-C
I/Os, on average, the path after 100,000 stalls was 99.5%
the length of the path after 10 million stalls.

From these results, we have chosen to run our depth first
search only until it goes 1 million iterations without produc-
ing a longer path. (We use 1 million instead of 100,000, be-
cause the difference in running time is nominal compared to
the time needed to read in the data and generate the original
graph.) This limit will produce a reasonable lower-bound
on our results.

4.3 Distribution quality

Our results from the previous section show that we cannot
use the depth-first search alone to generate a synthetic disk

access pattern. In this section, we evaluate two methods of
creating a complete synthetic disk access pattern: “finish
randomly” and “approximation factor.”

In both cases, we evaluate the quality of the resulting
synthetic disk access pattern by comparing its distribution
of jump distance to the input from which it was gener-
ated. We quantify the difference between two distributions
of jump distance using the weighted average of the percent
difference between each pair of corresponding histogram
bins. For example, we calculate the percent difference be-
tween binx for the target workload and binx for the syn-
thetic workload as follows: (|htarget[x]−hsynthetic[x]|

htarget[x] ). Be-
cause there is no universally accepted metric for quantify-
ing the difference between distributions, we considered five
different metrics. All five exhibited similar trends; so, inthe
interest of space and clarity, we choose to present only the
average bin difference.

4.3.1 Finish randomly

As described in Section 3, the first option for generating a
complete disk access pattern is to wait until the depth-first-
search has not made any progress for the specified number
of iterations, then generate the complete disk access pattern
from the partial path by placing the unused I/O requests ran-
domly throughout the path.

Figure 9 shows how the quality of our synthetic disk ac-
cess patterns compare to a disk access pattern produced by
choosing the sequences of sectors randomly without consid-
ering jump distance. Three of our five vertex orderings are
considerably more accurate than the “completely random”
access pattern. The descending and descending absolute
value sort orders produce progressively lower quality access
patterns as the length of the generated trace increases. We
suspect this lower quality is a result of the correspondingly
short partial paths from which the final disk access patterns
are derived. (See Figures 3 and 4.)

4.3.2 Approximation factor

As described in Section 3, our second option is to allow
the depth-first search to be a little “sloppier”. In particu-
lar, we allow it to use sectors and/or jump distances more
often than they appear in the target workload. We investi-
gated different combinations of sector and jump distance
approximation factors to see (1) which combinations al-
lowed our depth-first search to finish within a reasonable
amount of time and (2) how the synthetic disk access pat-
terns produced compared in quality to those produced in
Section 4.3.1.

Tables 1 and 2 show typical results for the E-mail work-
load. For these experiments, we generated 50,000 I/Os per
LU using the random and ascending vertex ordering respec-
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produce best quality synthetic disk access patterns
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Jump Dist. Sector Count Factor
Factor 1.00 1.01 1.05 1.10 1.25 1.50 1.75 2.00
1.00 77.4 (18.6) 77.4 (18.7) 77.6 (18.3) 77.9 (18.0) 81.2 (15.0) 86.5 (10.5) 87.8 ( 9.5) 91.9 ( 6.6)
1.01 77.1 (19.1) 77.2 (19.1) 77.8 (18.1) 78.4 (17.7) 81.3 (15.0) 86.6 (10.7) 88.0 ( 9.5) 92.1 ( 6.5)
1.05 77.8 (18.9) 77.8 (18.8) 78.1 (18.5) 78.7 (17.9) 81.8 (15.2) 87.2 (11.0) 88.8 ( 9.8) 92.5 ( 7.5)
1.10 77.7 (19.6) 77.7 (19.7) 78.4 (18.9) 79.1 (18.3) 82.6 (15.5) 88.1 (11.8) 89.8 (10.6) 93.8 ( 8.0)
1.25 79.7 (19.8) 79.7 (19.7) 80.5 (19.3) 80.1 (20.0) 85.4 (17.0) 91.1 (13.7) 92.8 (12.9) 95.9 (12.6)
1.50 83.5 (19.8) 83.4 (19.9) 84.0 (19.8) 84.5 (20.2) 88.9 (19.5) 95.1 (18.2) 98.0 (20.1) 99.4 (20.1)
1.75 84.2 (23.0) 84.3 (23.0) 85.5 (22.7) 87.0 (23.0) 91.8 (22.0) 98.3 (25.1) 98.9 (25.8) 99.6 (25.8)
2.00 91.0 (23.8) 91.1 (23.8) 91.6 (24.2) 92.3 (24.2) 98.5 (23.3) 100.0 (24.4) 100.0 (24.8) 100.0 (24.6)

Table 1. Length and quality of synthetic Email disk access pa ttern generated using approximation factors and a
random vertex ordering. The first number is the length of the p artial path found (as a percentage). The number
in parentheses is the quality of the jump distance distribut ion.

Jump Dist. Sector Count Factor
Factor 1.00 1.01 1.05 1.10 1.25 1.50 1.75 2.00
1.00 74.7 (22.6) 74.8 (22.5) 75.1 (22.2) 75.7 (21.6) 78.5 (18.3) 83.1 (12.5) 84.7 (10.5) 88.2 ( 8.0)
1.01 74.9 (22.7) 74.9 (22.7) 75.1 (22.4) 75.9 (21.7) 78.6 (18.5) 83.2 (12.6) 84.9 (10.6) 88.2 ( 8.2)
1.05 75.4 (23.2) 75.5 (23.2) 75.9 (22.9) 76.5 (22.3) 79.1 (19.3) 84.0 (13.4) 85.8 (11.2) 89.0 ( 8.8)
1.10 76.3 (23.9) 76.3 (23.9) 76.8 (23.6) 77.5 (23.1) 80.1 (20.4) 84.9 (14.4) 86.9 (12.1) 90.3 (10.0)
1.25 79.1 (26.8) 79.2 (26.8) 79.7 (26.5) 80.5 (25.7) 83.8 (23.4) 88.8 (18.4) 90.2 (17.0) 93.1 (16.6)
1.50 83.9 (33.2) 84.1 (33.1) 84.9 (32.6) 86.4 (31.9) 90.9 (31.2) 95.0 (33.6) 96.4 (33.7) 99.1 (34.4)
1.75 86.1 (40.1) 86.2 (40.1) 87.0 (39.6) 88.6 (38.8) 93.3 (38.8) 98.3 (44.7) 99.0 (46.4) 100.0 (48.4)
2.00 92.7 (59.5) 92.8 (59.4) 93.9 (59.6) 95.0 (60.2) 98.3 (61.1) 99.8 (62.7) 100.0 (62.8) 100.0 (68.4)

Table 2. Length and quality of synthetic Email disk access pa ttern generated using approximation factors and
an ascending vertex ordering. The first number is the length o f the partial path found (as a percentage). The
number in parentheses is the quality of the jump distance dis tribution.



tively. As expected, raising either approximation factor in-
creases the length of the partial path found. However, the
increases in length were less than we had expected. The
depth-first search does not find a 99% complete Hamilto-
nian path until at least one of the approximation factors is
1.5. Fortunately, with the random ordering, increasing the
approximation factor decreases the quality of the synthetic
disk access pattern by at most 50%. In contrast, increasing
the approximation factors when using the ascending order-
ing quickly decreases the quality of the resulting jump dis-
tance distribution until it is almost as low as if the sectors
were ordered randomly without regard to jump distance.

4.4 Synthetic workload quality

Measuring the quality of the output distributions is useful
because it tells us how well our generation algorithm repro-
duces the pattern it is designed to reproduce. However, the
output distributions are merely “cosmetic” similarities be-
tween the target and synthetic workloads: They tell us noth-
ing about the usefulness of the resulting synthetic workload.
It is like expecting two people with the same height to have
the same basketball skills.

In this section, we measure the usefulness of our syn-
thetic disk access generator in producing accurate synthetic
workloads. We will issue both the target and synthetic
workloads to a storage system and measure the resulting
distribution of response time (the percentage of I/Os that
complete quickly and the percentage of I/Os that complete
slowly).

We will use three different metrics to quantify the differ-
ence between the performances of two distributions:

1. Mean response time: The mean response time (MRT)
is the simplest, but least accurate metric. A synthetic
workload should have a mean response time similar
to the workload it models; however, two workloads
with very different behaviors can have similar mean re-
sponse times. We express this metric as the percent dif-
ference between the mean response times of the com-
pared workloads.

2. Root-mean-square: The root-mean-square (RMS) is
the metric used in the related work (e.g., [5], [14]).
Specifically, RMS is the root mean square of the hori-
zontal distance between the response time cumulative
distribution functions (CDFs) for the synthetic and tar-
get workloads. We normalize this metric by presenting
it as a percentage of the mean response time of the tar-
get workload.

The RMS metric is useful because it measures simi-
larity based on the performance observed by the user.
However, because the RMS metric sums the square of
horizontal differences, workloads whose CDFs have

Workload MRT RMS Log area
Completely Random 15% 32% 6%
Ascending 1% 3% 1%
Ascending Abs. 9% 18% 4%
Descending 3% 6% 2%
Descending Abs. 13% 27% 6%
Random 11% 23% 5%

Table 4. Performance of synthetic E-mail work-
loads

Workload MRT RMS Log area
Completely Random 4% 5% 9%
Ascending 25% 22% 69%
Ascending Abs. 20% 18% 43%
Descending 21% 20% 64%
Descending Abs. 9% 8% 16%
Random 3% 3% 4%

Table 5. Performance of synthetic OLTP workloads

horizontal “plateaus” tend to have very large RMS val-
ues — especially when those plateaus are near 1 on the
y-axis (i.e., “heavy tails”).

3. Log area: The log area metric is the area between two
CDFs plotted with a log scale on thex-axis. Using
the log scale causes differences at all percentiles to be
weighted equally. This metric more accurately reflects
the similarity of the workload’s overall performance,
but de-emphasizes differences most noticeable to the
user.

We use the Pantheon disk array simulator to simulate the
execution of our workloads [18]. Pantheon simulates disk
arrays comprising several disks connected to one or more
controllers by parallel SCSI busses. The controllers have
large non-volatile-RAM caches. (This general architecture
is similar to the FC-60 used in [12].) Pantheon provides
many additional configuration parameters including number
and type of component disks, and size of cache. Table 3 pro-
vides the Pantheon configuration used to study each work-
load.

In order to observe the effects of our synthetic disk ac-
cess pattern only, we modified the target workloads. The
modified E-mail workload is read-only, has a constant re-
quest size of 8KB, and issues precisely 328 I/Os every sec-
ond. The modified OLTP workload is also read-only , has
a constant request size of 2KB, and issues precisely 500
I/Os every second. Attempting to evaluate our disk ac-
cess pattern in the context of the original workloads is diffi-
cult because the correlations between sectors accessed and
whether those accesses are reads and writes have a large ef-
fect on storage systems with a write back cache (like the
FC-60). Fixing the values for those I/O parameters not un-
der study eliminates this problem [5].

Table 4 shows the performance of our modified E-mail



Num Num Num raid Disk
workload disks busses groups size disk type Cache size Bus rate
OpenMail 180 4 45 9 GB Seagate Cheetah 10K rpm 1 GB 40 MB/s
OLTP 80 2 40 1 GB Wolverine III (HPC2490A) 256 MB 40 MB/s

Table 3. Summary of Pantheon configurations

Workload Hit rate
Target 67.0%
Completely Random 66.6%
Ascending 65.9%
Ascending Abs. 64.7%
Descending 65.4%
Descending Abs 65.0%
Random 64.3%

Table 6. Cache hit ratio for synthetic E-mail work-
loads

Workload Hit rate
Target 8.7%
Completely Random 9.9%
Ascending 13.8%
Ascending Abs. 10.5%
Descending 10.5%
Descending Abs 8.9%
Random 7.3%

Table 7. Cache hit ratio for synthetic OLTP work-
loads

workload as compared to synthetic workloads generated us-
ing various sort orders. For comparison, we also show the
performance of a workload in which the sequence of sec-
tors accessed is chosen randomly without regard to jump
distance.

We can see that, although using a random sort order pro-
duces the longest Hamiltonian path, it does not produce the
best synthetic workload from a performance standpoint. We
suspect this decrease in performance is caused by a loss of
temporal locality. Upon examining Pantheon’s log files, we
found that the synthetic workload based upon a random sort
order has a cache hit rate that is 2.7% lower than that of
the target workload. (See Table 6.) In contrast, the most
accurate synthetic workload — the one based on searching
sectors in ascending order — has a cache hit rate closer to
that of the target workload. Searching sectors in ascending
order implicitly maintains temporal locality by considering
the same sectors first. For example, because sector 1 is con-
sidered first, it is likely to be used frequently at the begin-
ning of the trace. The performance of the workload based
upon a descending sort order falls in the middle: Again, ex-
amining the same sectors first produces temporal locality;
however, because the partial paths are shorter, the distri-
bution of jump distance is not as accurate as the workload
based on an ascending order.

Table 5 shows the performance of our modified OLTP

workload as compared to the synthetic workloads generated
using various sort orders. In this case, the random vertex
ordering did lead to the most accurate synthetic workload.
We suspect the random vertex ordering was best in this case
because, as Table 7 shows, the OLTP workload has a low
cache hit rate.

The differences in performance among the different syn-
thetic workloads shows that a single synthetic workload
generation technique is not necessarily the best for all work-
loads. In the case above, we saw how the ascending vertex
order produced the most accurate synthetic workload for the
E-mail workload whereas the random vertex order was bet-
ter for the OLTP workload, which has less temporal local-
ity. These results further support the need for a tool like the
Distiller, which can accurately evaluate the effectiveness of
several different generation techniques.

5. Future work

There are many aspects of our synthetic disk access gen-
erator that we have yet to investigate. (1) We plan to further
investigate the effects of dividing a workload into smaller
parts according to sector number. (2) Our results showed
that a random ordering of vertices for the depth-first-search
led to the longest partial Hamiltonian paths. We would like
to identify precisely what attributes of the random order (as
opposed to the ascending or descending vertex orders) lead
to the longest paths and possibly define a new, deterministic
order that always captures these attributes. (3) Our tech-
niques for generating a complete disk access pattern given a
partial Hamiltonian path are somewhat simple. We plan to
investigate more complex and accurate techniques.

We also plan to add our generator to the Distiller’s library
of workload analysis and generation techniques. Once it is a
part of the Distiller’s library, we can evaluate the usefulness
of our jump distance generator when combined with other
synthetic workload techniques, such as those that accurately
reproduce arrival time patterns, or those that address corre-
lations between I/O request parameters.

6. Conclusions

We have shown that, in a reasonable amount of time, we
can generate a synthetic disk access pattern that maintains
both a specified distribution of sectors accessed and a spec-
ified distribution of jump distance within a reasonable mar-
gin of error. Not only is the resulting synthetic workload
“cosmeticly” similar to the workload it is intended to model,



but it is also more accurate than synthetic workloads using
more traditional generation techniques.
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