
Synthesizing Representative I/O Workloads Using Iterative Distillation

Zachary Kurmas
College of Computing

Georgia Tech
kurmasz@cc.gatech.edu

Kimberly Keeton
Storage Systems Department

Hewlett-Packard Labs
kkeeton@hpl.hp.com

Kenneth Mackenzie
College of Computing

Georgia Tech
kenmac@cc.gatech.edu

Abstract

Storage systems designers are still searching for bet-
ter methods of obtaining representative I/O workloads to
drive studies of I/O systems. Traces of production work-
loads are very accurate, but inflexible and difficult to ob-
tain. The use of synthetic workloads addresses these limi-
tations; however, synthetic workloads are accurate only if
they share certain key properties with the production work-
load on which they are based (e.g., mean request size, read
percentage). Unfortunately, we do not know which proper-
ties are “key” for a given workload and storage system.

We have developed a tool, the Distiller, that automati-
cally identifies the key properties (“attribute-values”) of the
workload. The Distiller then uses these attribute-values to
generate a synthetic workload representative of the produc-
tion workload. This paper presents the design and eval-
uation of the Distiller. We demonstrate how the Distiller
finds representative synthetic workloads for simple artificial
workloads and three production workload traces.

1. Introduction

The behavior of large enterprise storage systems is heav-
ily dependent upon the choice of workload. Consequently,
potential design and configuration decisions must be evalu-
ated with workloads that represent how the storage system
will be used in a production environment.

Researchers generally use a combination of synthetic
workloads and traces from production storage systems to
drive storage system design studies. Synthetic workloads
are artificially generated workloads intended to induce sim-
ilar behavior on the underlying storage system by preserv-
ing the properties of the target realistic workloads on which
they are based (e.g., same request interarrival time distribu-
tions, request size distributions, operation mixes, and local-
ity) [4].

Synthetic workloads help to overcome many of the lim-
itations of production traces: (1) Synthetic workloads can

be specified using only the values of high-level attributes,
which do not contain any user-specific information, thereby
reducing privacy concerns. (2) Summarized workload at-
tributes may be considerably smaller than a complete trace,
making them easier to store and share over the Internet. (3)
Synthetic workloads may better enable hypothetical stud-
ies: adjusting the attribute-values will change the resulting
synthetic workload to approximate future workloads.

The main challenge is to choose a set of attributes that
specify a representative synthetic workload. Most work-
load analysis and synthesis techniques [5, 6, 7, 8, 9, 16, 17]
attempt to reproduce only one or two important workload
properties. As a result, synthesizing a representative work-
load requires a tedious process of searching for each of the
attributes that significantly affect storage system behavior.
This process must currently be repeated for every workload
and storage system combination under study.

This paper presents our approach for automating this te-
dious process, and describes our tool, the Distiller. Begin-
ning with a trace of the target workload and a set of candi-
date attributes, the Distiller automatically determines which
attributes should be used to synthesize a workload that is
representative of the target. We consider two workloads to
be representative when they have similar distributions of I/O
response time when replayed on a given storage system.

We have used the Distiller to automatically find the key
attributes for several simple artificial workloads and three
production workloads — an email server, a transaction pro-
cessing database server, and a decision support database
server. We show that, for all but one of the target workloads
considered, the Distiller produces a synthetic workload with
a response time distribution within 12% of the target work-
load’s response time distribution.

The Distiller chooses attributes from a library of known
analysis and synthesis techniques. If the library is insuffi-
cient, the Distiller can identify which I/O request parame-
ters are measured by the missing attribute, thus helping to
guide the invention of a new analysis/synthesis technique.
The Distiller can easily incorporate new attributes into its
library as they are discovered — either as part of this in-

Production Workload Synthetic WorkloadList of Attributes

CDFs of Response Time

[R, 1024, 120932, .121]
[W, 8192, 120834, .122]
[W, 2048, 188983, .124]

...

[W, 2048, 120894, .122]
[R, 8192, 120932, .125]
[W, 1024, 188983, .126]

...

Disk Array Disk Array

Figure 1. Problem statement.

Add New
Attributes

Generate
Synthetic
Workload

Compute
Attribute-

values

Compare
Behavior
to Target

Is
Behavior
Similar?

No

Yes

Initial
Attribute

List

Target
Workload

Representative
Synthetic
Workload

Figure 2. The Distiller’s iterative loop.

vestigation, or from other investigations, as described in the
literature. This extensibility allows the Distiller to easily
evaluate new workloads and new storage technologies (e.g.,
MEMS-based storage), which may have different character-
istics from known workloads and storage devices.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work, and Section 3 more formally
defines the problem we are trying to solve. Section 4 dis-
cusses our automatic iterative approach for choosing at-
tributes to generate representative synthetic workloads, and
Section 5 presents experimental results. Section 6 con-
cludes and outlines future work.

2. Related work

The literature describes and evaluates many techniques
for generating synthetic block-level I/O workloads [5, 6, 7,
8, 9, 16, 17], file-level workloads [1, 3, 14] and application-
level I/O workloads [11]. Our contribution is different:
instead of presenting another synthetic workload genera-
tion technique, the Distiller leverages these existing tech-
niques to automatically choose the ones that are most ap-
propriate for the target workload and storage system. The
current block-level analysis and corresponding generation
techniques serve as the Distiller’s “library” of candidate at-
tributes.

Researchers have used principal component analysis
(PCA) to generate batch computational workloads [2].
Given a large set of workloads and a set of attribute-values
that characterize those workloads, PCA computes new vari-
ables, called principal components, that best describe the
workloads. These principal components are uncorrelated
linear combinations of the original attribute-value variables.
Applying this approach to our research presents several
challenges. First, to use PCA to choose the characteris-
tics that describe workloads with similar performance, we
would need to provide a set of workloads with similar per-
formance. This is essentially the problem that we are trying
to solve. Second, the resulting principal components are
linear combinations of attributes, rather than a subset of the
initial list of attributes, and hence may not have an intuitive
meaning.

3. Problem definition and terminology

Our goal is to automatically determine which attributes
specify a synthetic workload that is representative of the tar-
get workload. Specifically, we want the synthetic and target
workloads to have similar performance when played against
the same underlying storage system. Figure 1 illustrates this
goal. In this section, we describe workload formats and tar-
get storage systems; then we define terminology and evalu-
ation metrics.

Storage systems: We focus on block-level, disk-array-
based storage systems commonly used in enterprise envi-
ronments. Disk arrays provide a block-level I/O interface
by exporting logical units (LUs), which appear as “virtual
disks” to the host. LUs are constructed from a subset of the
array’s disks and configured using a particular RAID layout
(e.g., RAID5). Disk arrays generally employ a large non-
volatile memory cache, leading to request response times
that may vary by as much as three orders of magnitude.

Workload trace: Our “target” workloads are traces of
I/O requests collected from production environments. Each
I/O request is described by four parameters: the operation
type (i.e., read or write), the request size, the location (i.e.,
logical address, including both LU ID and byte address),
and the interarrival time. These workload traces serve as
open workload models; therefore, we do not identify any
process- or thread-level relationships between individual re-
quests, nor do we model the “think-time” between related
I/O requests.

Attribute and attribute-value: An attribute is a metric
for capturing a workload characteristic (e.g., mean request
size, read percentage, or distribution of location values). An
attribute-value is an attribute paired with the quantification
of that attribute for a specific workload (e.g., a mean request
size of 8 KB, or a read percentage of 68%).

Evaluation criteria: We can determine performance
similarity by considering a variety of performance char-
acteristics (e.g., response time, throughput) and similarity
measures (e.g., root mean square distance, Kolmogorov-
Smirnov test). The design of the Distiller is independent of
the performance metric and similarity measure chosen. In
this paper, our performance metric is request response time
distribution: the Distiller’s synthetic workload should main-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

C
um

ul
at

iv
e

fr
ac

tio
n

of
 I/

O
s

Latency in seconds

Initial synthetic workload
Target workload

Figure 3. The Distiller cannot accurately synthesize
the target Email workload using only the initial at-
tribute list of empirical distributions for the trace pa-
rameters.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

C
um

ul
at

iv
e

fr
ac

tio
n

of
 I/

O
s

Latency in seconds

Distribution of location
Rotated list of location

Rotated list of request size
Distribution of request size

Figure 4. The difference between location lines (15%
demerit) indicates the need for a

�
location � attribute.

The similarity of the request size lines (8% demerit)
indicates no need for a

�
request size � attribute.

tain the same response time distribution as the target work-
load when both are played against the same storage system.
Our similarity metric is the demerit figure [13]. The demerit
figure is the root mean square of the horizontal distance be-
tween the response time cumulative distribution functions
(CDFs) for the synthetic and target workloads. We will
present the demerit figure in relative terms, as a percentage
of the mean response time of the target workload.

A synthetic workload that perfectly represents the tar-
get workload trace has a demerit figure of 0%. However,
due to various experimental errors, it is difficult to achieve
identical performance. Ganger distinguishes between syn-
thesis error, due to the different synthesis techniques, and
randomness error, the error of a single synthesis technique
using different random seeds [5]. Because we are playing
requests against a real storage environment, we may also
experience replay error: the experimental error due to non-
determinism in the disk array and host operating system.
Our experiments indicate that replay error can be as high
as 10%; we therefore set our target at 12%, allowing for an
additional 2% synthesis error and randomness error.

4. Our approach

In this section, we present our iterative approach for de-
termining which attributes are necessary for synthesizing a
representative I/O workload. This approach is embodied in
a tool we call the Distiller.

At a high level, the Distiller iteratively builds a list of
“key” attributes. During each iteration, the Distiller identi-
fies one additional key attribute, adds it to the list, then tests
the representativeness of the synthetic workload specified
by the current list of key attributes. This loop (shown in

Figure 2) continues until either (1) the difference between
the performance of the synthetic and target workloads is be-
low some user-specified threshold, or (2) the Distiller deter-
mines that no set of attributes in the library will specify a
representative synthetic workload.

Running Email example: To make the concepts more
concrete, we will use a running example to illustrate
the Distiller’s operation on a real production workload.
Progress will be described in each section, and the results
summarized in Table 4.

The target workload for this example is a 900-second
trace of the workload created by the OpenMail email ap-
plication. For simplicity, we will examine only one LU.
The complete workload is described in more detail in [12].
Our baseline trace contains 19,769 I/Os, with an average
request rate of 22 I/Os per second, and an average through-
put of 164 KB/s. The workload contains highly randomized
accesses using small requests that are mostly (72%) writes.
Over 90% of the requests have request sizes of 8 KB or less;
almost 50% are exactly 8 KB. The meta-data portion of the
logical volume is frequently accessed, while the email mes-
sage (i.e., data) portion of the volume does not exhibit the
same temporal locality.

4.1 Initial attribute list

The Distiller’s first step is to generate a synthetic workload
based on a set of empirical distributions of values for the
four I/O request parameters. We start with these explicit
distributions because implicit distributions (e.g., normal or
Poisson) have been shown to be inaccurate [5].

Running Email example: Figure 3 shows the response
time distributions for the initial synthetic workload and the

Table 1. Examples of the subtractive method, using empirical distribution substitution and list rotations.

Target I/O Workload Empirical Rotated Rotated Rotated
Req Size Req Size Together Apart

Time Location Op Size Size Size Op Size Op Size
0.050397 6805371 W (a) 3072 (a) 4096 (g) 3072 (f) W (f) 3072 (f) W (e) 3072 (f)
0.762780 7075992 R (b) 8192 (b) 3072 (a) 4096 (g) R (g) 4096 (g) W (f) 4096 (g)
0.789718 11463669 W (c) 3072 (c) 3072 (f) 2048 (h) R (h) 2048 (h) R (g) 2048 (h)
0.792745 7051243 R (d) 1024 (d) 8192 (b) 3072 (a) W (a) 3072 (a) R (h) 3072 (a)
0.793333 11460856 W (e) 8192 (e) 1024 (d) 8192 (b) R (b) 8192 (b) W (a) 8192 (b)
0.808625 11463669 W (f) 3072 (f) 2048 (h) 3072 (c) W (c) 3072 (c) R (b) 3072 (c)
0.808976 7049580 R (g) 4096 (g) 8192 (e) 1024 (d) R (d) 1024 (d) W (c) 1024 (d)
0.809001 7050244 R (h) 2048 (h) 3072 (c) 8192 (e) W (e) 8192 (e) R (d) 8192 (e)

target workload, which result in a demerit figure of 65%.
Note the log scale on the � -axis. Given that the demerit
figure is larger than the threshold of 12%, the Distiller must
search for additional attributes.

4.2 Choosing an attribute group

Because the time to evaluate a synthetic workload’s re-
sponse time distribution is proportional to the length of the
target workload, the Distiller should evaluate attributes in
an intelligent order. Instead of evaluating attributes indi-
vidually in an arbitrary order, the Distiller estimates the
maximum potential benefit of an entire group of related at-
tributes. Each group of related attributes captures a par-
ticular relationship within a single workload parameter or
between multiple parameters. Once the Distiller determines
which group holds the most potential for improvement, it
can focus on finding the appropriate attribute to capture that
relationship.

We define an attribute group as a set of attributes whose
values are calculated using the same set of I/O request pa-
rameters (and thus capture information about the same re-
lationship). For example, the

�
interarrival time � attribute

group contains those attributes that measure only the in-
terarrival times of different requests (e.g., mean interarrival
time, the Hurst parameter). The

�
location, operation type �

attribute group contains those attributes that measure the re-
lationship between requests’ locations and operation types
(e.g., separate distributions of location values for read and
write requests). All possible combinations of parameter re-
lationships result in a total of fifteen attribute groups. By
definition, each attribute is a member of exactly one at-
tribute group.

To evaluate the potential benefit of an attribute group,
the Distiller examines what happens when the relationship
captured by the attribute group is destroyed. If a synthetic
workload without the relationship under test performs sim-
ilarly to the target workload, then the attribute group (and
hence all of its member attributes) provides little or no ben-

efit. However, if performance without the relationship is
dramatically different, then the attribute group is important.
We call this approach to evaluating the importance of at-
tribute groups the subtractive method. The goal is to isolate
the contribution of the relationship represented by the at-
tribute group under test. For example, to isolate the effects
of the

�
request size � attribute group, we want to separate

its contribution from the contributions of
�
request size, op-

eration type � ,
�
request size, location � , and

�
request size,

interarrival time � , as well as all three- and four-parameter
attribute groups involving request size.

We isolate a given attribute group by replacing its param-
eter values in the target trace with either an empirical dis-
tribution or a rotation of the original values. The Distiller
evaluates the potential contribution of a single-parameter at-
tribute group using both of these techniques. Table 1 pro-
vides an example application of the subtractive method for�

request size � . The left panel of the table shows the target
workload. The second panel (labeled “Empirical Request
Size”) substitutes an empirical distribution for the request
size parameter list, effectively removing all relationships
from any of the groups involving request size (

�
request

size � ,
�
request size, location � , etc.). The third panel (la-

beled “Rotated Request Size”) rotates the list of request
sizes to maintain the intra-request size relationships, while
destroying relationships between request size and the other
parameters. The attribute group’s contribution can then be
isolated by comparing the difference between the response
time distributions (using the demerit figure) for the empiri-
cal and the rotated workloads.

The Distiller evaluates the potential contribution of a
multi-parameter attribute group using a combination of list
rotations. First, for a parameter � , it evaluates the poten-
tial of all

�
� , � � relationships (where � is another param-

eter) by comparing the performance for a rotated � list to
the target workload. If the performance is sufficiently dif-
ferent, then at least one of these multi-parameter relation-
ships must be important. The Distiller then isolates the
contributions of each potential

�
� , � � pairing using two

Table 2. Candidate attributes.

Attribute Attr. Group Description

empirical Any histogram of values for this parameter obtained from the workload trace
distribution (This is the initial attribute for each parameter.)
list of values Any observed list of of values for the parameter in the target workload trace

(This is the “perfect” attribute; it is used only for evaluation/comparison purposes)
Markov model Any higher-order Markov model with � different states, corresponding to different regions of the

distribution; transition probabilities are determined empirically.
jump distance

�
location � distance (in KB) from the beginning of the previous request to the beginning of the

current request.1

Markov model using
�
location � Markov model using jump distance or run count. Run count is the number of requests

combined attributes in a sequential run (i.e., a series of adjacent requests with jump distance equal to the
size of the previous request).

synthetic workloads with different rotations. Table 1 pro-
vides an example application of the subtractive method for�

request size, operation type � . Again, the left panel repre-
sents the target workload. The fourth panel (labeled “Ro-
tated Together”) shows how request size and operation type
can be rotated together, preserving the

�
request size, oper-

ation type � ,
�
request size � and

�
operation type � relation-

ships, while destroying the other relationships involving re-
quest size and operation type. The right panel (labeled “Ro-
tated Apart”) shows how separately rotating the two lists
further destroys the

�
request size, operation type � relation-

ship. The attribute group’s contribution can then be isolated
by computing the difference between the response time dis-
tributions (i.e., the demerit figure) for the “rotated together”
workload and “rotated apart” workloads.

The Distiller’s next step depends on the result of the de-
merit calculation for the isolated attribute group. If the de-
merit figure is less than the user-defined threshold, then the
potential contribution for the attribute group is small enough
that the addition of further attributes from that group is un-
warranted. Otherwise, the attribute group’s potential con-
tribution is large enough that the Distiller should determine
which attribute from the group to add to the list of key at-
tributes.

In exploring attribute groups, the Distiller first evalu-
ates the importance of single-parameter attribute groups
(e.g.,

�
location � ,

�
request size � ,

�
operation type � , and�

interarrival time �). We refer to these iterations as phase
one of the algorithm. After examining the single-parameter
attribute groups, the Distiller addresses two-parameter at-
tribute groups in phase two. Finally, if necessary, the Dis-
tiller will search for important three-parameter and four-
parameter attributes. However, we have yet to encounter
any workloads for which it is necessary to proceed beyond
phase two.

Running Email example: The Distiller begins its ex-
ploration of attribute groups by applying the subtractive
method to each single-parameter attribute group. Figure 4

shows two representative results for
�
request size � and�

location � . The empirical distribution and rotated work-
loads for

�
request size � are similar, with a demerit figure of

only 8%; thus, no additional
�
request size � attributes (be-

yond the default empirical distribution) are necessary. Al-
though the distributions for the two

�
location � workloads

look similar, the demerit figure of 15% is above our thresh-
old of 12%. Therefore, the Distiller will search for more
informative

�
location � attributes.

4.3 Picking an attribute

Once the Distiller has identified a promising attribute group,
it must choose a specific attribute from that group. It ex-
plores the candidate attributes in a pre-determined order and
evaluates how close each attribute comes to achieving the
potential contribution of the attribute group. The Distiller
incorporates the first eligible attribute encountered. This
first-fit criterion allows us to avoid the execution time over-
head of extra attribute evaluations.

The Distiller uses a variant of the subtractive method to
evaluate candidate attributes. It generates a synthetic work-
load by using the candidate attribute, and preserving the list
of original values for parameters not associated with the
attribute under test. The Distiller then compares this syn-
thetic workload against the synthetic workload that main-
tains “perfect information” for the attribute group (the “ro-
tated” workload for single-parameter attributes, and the “ro-
tated together” workload for multi-parameter attributes). If
the two workloads have similar behavior (e.g., a demerit
figure within the given threshold), the Distiller adds the at-
tribute to the list of key attributes. If the two workloads have
very different behavior, the attribute is not helpful and the
Distiller proceeds to evaluate other candidate attributes.

1The literature traditionally defines jump distance as the distance be-
tween the end of the previous request and the beginning of the current
request. Our modified definition allows jump distance to be strictly a�

location � attribute.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

Latency in Seconds

Rotated List of Locations
Markov Model of locations

Figure 5. Markov model-generated location values
are representative of the target workload’s location
values, so the Distiller adds the attributes to the list
of key attributes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

C
um

ul
at

iv
e

fr
ac

tio
n

of
 I/

O
s

Latency in seconds

Initial synthetic workload
Improved synthetic workload

Target workload

Figure 6. Although using a Markov model to choose
location values improves the accuracy of the result-
ing synthetic workload, the improved workload is still
not sufficiently representative.

If the Distiller evaluates every attribute in a group and
finds none to be useful, then the library of attributes is in-
sufficient. The user then has two options: (1) manually add
more attributes to the library and re-start the Distiller; or (2)
continue with the best available attribute from the library.

4.4 Attribute library

The Distiller implements a library of attributes described in
the research literature. Table 2 describes the attributes for
which we have implemented analysis and synthesis tech-
niques.

The Distiller’s Markov model-based attributes are all de-
rived from a single “template” attribute: MM(d, i, s, h). To
instantiate a specific attribute from this template, we must
specify four parameters: (1) the dependent parameter, d:
the request parameter being measured; (2) the independent
parameter, i: the request parameter(s) on which the states
are based; (3) the number of states, s, used to express the
independent parameter;2 and (4) the history h: the num-
ber of previous I/Os considered (e.g., based on the previous
three operation types). This template allows specification of
a higher-order Markov model where each state is dependent
on � and � . For example, MM(loc, loc, 100, 1) refers to
a Markov model where the next location (�) is determined
from the location (�) of the single (�) last request. This
attribute divides the address space of the LU into 100 (�)
regions.

Running Email example: Recall from our earlier ex-
ample that the Distiller had identified the

�
location � at-

2Operation type has only two states: read and write. For the other re-
quest parameters, we generally use 100 states, and let each state correspond
to the values between two percentiles.

tribute group as the most promising. To explore this group,
the Distiller first evaluates a Markov model of locations
— MM(loc, loc, 100,1). Figure 5 shows that the Markov
model-generated synthetic workload behaves very much
like a workload with the original, rotated sequence of loca-
tion values. Therefore, the Distiller adds the Markov model
of locations to its key attribute list.

4.5 Tracking progress for each iteration

After the Distiller identifies a new attribute of interest, it
evaluates the synthetic workload specified by the improved
attribute list. If the new workload is sufficiently represen-
tative, the iterative process concludes. Otherwise, the Dis-
tiller continues its loop of evaluating attribute groups and
candidate attributes.

Running Email example: Figure 6 shows the results for
the improved attribute list containing the Markov model of
location values. Because the demerit figure (54%) is still
well above the desired threshold, the Distiller continues.

4.6 Subsequent phases of Email example

After addressing each single-parameter attribute group, the
Distiller addresses the two-parameter attribute groups. Re-
call that the Distiller begins this phase by comparing the
single-parameter rotated workload for each I/O parameter

� to the original workload trace to evaluate the potential of
all

�
� , � � multi-parameter attributes (where � is any other

I/O parameter). It then determines whether breaking these
multi-parameter relationships has a large effect on the re-
sulting synthetic workload’s behavior.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

C
um

ul
at

iv
e

fr
ac

tio
n

of
 I/

O
s

Latency in seconds

Rotated list of operation type
Rotated list of location

Rotated list of request size
Rotated list of interarrivaltime

Target workload

Figure 7. Inter-parameter relationships are important
for operation type and location, but not for request
size and interarrival time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

C
um

ul
at

iv
e

fr
ac

tio
n

of
 I/

O
s

Latency in seconds

Rotated together
Rotated apart

Figure 8. The potential for
�
operation type, location �

is high, indicating that some attribute in this group
will significantly affect performance.

Figure 7 illustrates this process. We see little differ-
ence in behavior when

�
request size, � � and

�
interarrival

time, � � relationships are broken; both demerit figures are
less than 5%. However, the behavior of the rotated work-
loads for operation type and location differ significantly (de-
merit figures of 50% to 60%) from that of the target work-
load. Therefore, we conclude that some

�
operation type, � �

attribute and some
�
location, � � attribute have a significant

effect on behavior. The Distiller next identifies appropriate
values for � and � by comparing the “rotated together” and
the “rotated apart” workloads, as described in Section 4.2.

In the case of operation type, the Distiller evaluates
the potential contribution of the

�
operation type, location � ,�

operation type, request size � , and
�
operation type, interar-

rival time � attribute groups. The high demerit figure (56%)
in Figure 8 indicates that there is an important

�
operation

type, location � attribute. Other experiments show that the�
operation type, request size � and

�
operation type, interar-

rival time � attribute groups promise little benefit.

When the Distiller has identified an important two-
parameter attribute group, it evaluates the candidate at-
tributes as described in Section 4.3. For our example, the
Distiller first evaluates separate Markov models of location
values for read requests and write requests. The resulting
synthetic workload has similar behavior to the workload
where operation type and location were rotated together.
Therefore, the Distiller adds this attribute to the list of key
attributes.

Figure 9 shows the results for the Distiller’s evaluation of
the synthetic workload specified by the improved attribute
list. Because the demerit figure (8%) is below the desired
threshold, the Distiller terminates.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01

C
um

ul
at

iv
e

fr
ac

tio
n

of
 I/

O
s

Latency in seconds

Improved synthetic workload
Target workload

Figure 9. The improved synthetic workload (using
separate Markov models for reads and writes) is
representative of the target Email workload.

5. Experimental results

In this section, we present the results of using the Dis-
tiller to produce representative synthetic workloads for sev-
eral target workloads. We examine both artificial workloads
and production workloads. Artificial workloads are simple
workloads generated from the Distiller’s library, intended to
verify that the Distiller works correctly. Production work-
loads are collected on real enterprise storage systems.

5.1 Experimental environment

The Distiller is responsible for applying the various subtrac-
tive methods, running the resulting experiments, examining
the results, choosing the attribute group for improvement,
and determining which attributes should be added to the list

Table 3. Workload parameters for target artificial workloads.

ID Location Operation Type Interarrival Time Request Size

W1 Uniform(0, 9GB) 50% reads Constant(20ms) Constant(8KB)
W2 Uniform(0, 9GB) 33% reads Exponential(20ms) Uniform(1KB, 128KB)

W3
MM(loc, loc, 4, 1)
each state 96MB

MM(op, op, 2, 1)
MM(iat, iat, 3, 1)�
.2ms, .9ms � , �

1ms, 5ms � ,250ms
MM(size, size, 4, 1)
1KB, 16KB, 64KB, 128KB

W4
MM(loc, loc, 4, 1)
each state 96MB

MM(op, op, 2, 1)
MM(iat, iat, 3, 1)�
.2ms, .9ms � , �

1ms, 5ms � ,250ms
MM(size, size, 4, 1)
1KB, 16KB, 64KB, 128KB

W5
MM(jump distance, loc, 4, 1)
98% probability of jump
length determined by location

MM(op, op, 2, 1)
MM(iat, iat, 3, 1)�
.2ms, .9ms � , �

1ms, 5ms � ,250ms
MM(size, size, 4, 1)
1KB, 16KB, 64KB, 128KB

W6
MM(loc, op, 2, 1)�
0, 64MB � 95% R, 5% W�
65MB, 10GB � 5% R, 95% W

MM(op, op, 2, 1)
MM(iat, op, 2, 2)
W, W: .6ms R, W: 100ms
W, R: 25ms R, R: 6ms

MM(iat, op, 2, 2)
W, W: 128KB R, W: 65KB
W, R: 2KB R, R: 16KB

W7
Runs of length Uniform(0,10)�
0, 64MB � 90% R, 10% W�
65MB,10GB � 10% R, 90% W

MM(op, op, 2, 1)
Four threads, each Exponential
with following means:
.03ms, .04ms, .05ms, .035ms

Constant(8KB)

of important attributes. It acts as an outer loop that coordi-
nates the activities of several other software tools that help
perform these tasks.

We use the HP-UX MeasureWare midaemon to collect
I/O traces [10]. These traces are analyzed by the Rubicon
tool [15] to produce both the attribute-values that charac-
terize the workload and the response time distribution. Our
workload generation tool takes a workload characterization
from Rubicon as input, and generates a synthetic workload
matching that characterization, which is then issued to a
storage device.

All of the experiments presented in this paper were con-
ducted on an HP FC-60 disk array populated with thirty 18
GB disks, spread uniformly across six disk enclosures, for
a total of 0.5 TB of storage. The array is configured with
five six-disk RAID5 LUs, each with a 16 KB stripe unit
size. The 256MB disk array cache uses a write-back man-
agement policy backed with non-volatile RAM. Writes are
considered complete once the data has been placed in the
cache, and then later committed to the disk media (a pro-
cess called “destaging”). Thus, from the perspective of the
user application, most writes will appear as cache hits (e.g.,
almost “free”), provided that the write portion of the cache
is not full.

5.2 Artificial workloads

In this section, we verify the correct operation of the Dis-
tiller. Table 3 shows the collection of artificial workloads
we chose to stress test the Distiller. Table 4 presents the re-
sults of applying the Distiller to the artificial workloads in
Table 3. Unless otherwise noted, the stopping condition for
each workload is a demerit figure of 12%.

We now briefly describe each workload, the Distiller fea-
tures it tests, and the experimental results:

W1 and W2 are simple workloads that are completely

described by the empirical distribution attributes on the ini-
tial attribute list. The Distiller stops before even entering
iteration 1 in both cases.

W3 demonstrates the Distiller’s ability to find single-
parameter attributes. The Markov models produce depen-
dencies within the sequence of request parameters, but no
inter-parameter dependencies.3

W4 shows that the Distiller can handle a temporary
degradation in the accuracy of the synthetic workload (i.e.,
when the addition of a key attribute does not improve the
representativeness of the resulting synthetic workload).

W5 demonstrates that the Distiller correctly chooses a
useful attribute for the chosen attribute group, without set-
tling on the first attribute it evaluates. During iteration 1, the
Distiller tests and rejects three Markov models of location,
and, instead, chooses a Markov model of jump distance.

W6 highlights the Distiller’s ability to find attributes that
describe multi-parameter correlations. In this workload,
read and write accesses have different request sizes and are
concentrated in different areas of the LU’s address space.
In addition, successive reads and successive writes have
smaller interarrival times than a read followed by a write,
or a write followed by a read. The Distiller correctly skips
over single-parameter attribute groups and finds the appro-
priate multi-parameter attributes.

W7 shows that the Distiller can find a useful set of at-
tributes, even if no attribute corresponds directly to the gen-
eration techniques. For this workload, we use a special run
count generator to create sequential runs that vary uniformly
from one to ten requests. Even though simple Markov mod-
els can only generate runs with an exponential distribution,
such a Markov model is sufficient to specify a representative
workload. Thus, the Distiller demonstrates that capturing
runs is important, but that maintaining the exact run count

3For demonstration purposes, we set W3’s threshold to 7% so that the
Distiller would not terminate after iteration 3.

Table 4. Summary of selected workload results.

ID Iter. Attr. group Attribute added Result

W1 0 empirical distributions 3%

W2 0 empirical distributions 6%

W3 0 empirical distributions 60%
1

�
loc � MM(loc, loc, 100, 1) 66%

2
�
op � MM(op, op, 2, 8) 42%

3
�
size � MM(size, size, 100, 1) 9%

4
�
iat � MM(iat, iat, 4, 3) 5%

W4 0 empirical distributions 15%
1

�
loc � MM(loc, loc, 10, 2) 22%

2
�
size � MM(size, size, 100, 1) 9%

Email 0 empirical distributions 65%
1

�
loc � MM(loc, loc, 100, 1) 56%

2
�
op, loc � MM(loc, op, 2, 1) 6%

OLTP 0 empirical distributions 29%
Log 1

�
loc � MM(jump dist., loc, 100, 1) 6%

ID Iter. Attr. group Attribute added Result

W5 0 empirical distributions 63%
1

�
loc � MM(jump dist, loc, 100, 1) 23%

2
�
size � MM(size, size, 100, 1) 13%

3
�
iat � MM(iat, iat, 100, 1) 11%

W6 0 empirical distributions 87%
1

�
op,size � MM(size, op, 2, 1) 54%

2
�
op, loc � MM(loc, op, 2, 1) 27%

3
�
op, iat � MM((op,iat), (op, iat), 8, 2) 5%

W7 0 empirical distributions 78%
1

�
loc � MM(jump dist, loc, 100, 1) 74%

2
�
op � MM(op, op, 2, 8) 30%

3
�
op, loc � MM(jump dist, (op, loc), 100, 1) 7%

OLTP 0 empirical distributions 53%
LU 1 1

�
loc � MM(loc, loc, 100, 1) 34%

2
�
op, loc � MM(jump dist, op, 100, 2) 13%

DSS 0 empirical distributions 68%
1

�
loc � Run Count Within State 18%

is not (at least for this workload).
The evaluation of these artificial workloads highlights

two of the Distiller’s strengths. First, the Distiller prop-
erly chooses attributes that produce representative synthetic
workloads for the artificial workloads examined. (We have
also demonstrated this correctness for many other artificial
workloads, which are not presented here due to space con-
siderations.) Second, the Distiller is able to identify which
attributes are important, regardless of the techniques that
actually generated the target artificial workloads.

5.3 Production workloads

In this section, we apply the Distiller to production work-
loads. Table 4 presents a summary of the results.

Email: Section 4 presented a detailed description of the
Distiller’s operation on one LU of this trace. It chooses a
Markov model for location, which is later subsumed by sep-
arate Markov models for location based on operation type
(i.e.,

�
operation type, location �) to generate a final synthetic

workload with a demerit figure of 6%.
OLTP log: This 1994 online transaction processing

(OLTP) trace measures HP’s Client/Server database appli-
cation running a TPC-C-like workload at about 1150 trans-
actions per minute on a 100-warehouse database. This tar-
get workload focuses on the busiest LU, the log, where ac-
cesses are highly sequential and write-only. The average
request rate is 90 I/Os per second with an average through-
put of 473 KB/s. The Distiller completes this trace in one
iteration, only choosing an improved

�
location � attribute.

OLTP LU1: Accesses to the second-busiest LU in this
workload are about 70% reads, with an average request rate
of 90 I/Os per second and an average throughput of 57 KB/s.
A visual inspection of the target trace shows accesses to

groups of similar addresses, with no obvious pattern (e.g.,
sequential runs or strides) within each group. This work-
load is distilled in two iterations using a Markov model of
location, which is later subsumed by Markov model of jump
distance as a function of operation type; the final demerit
figure is 13%.

DSS: This decision support system (DSS) trace was col-
lected on an audited TPC-H system running the throughput
test (multiple simultaneous queries) on a 300 GB scale fac-
tor data set. Accesses to this LU are read-only and nearly all
128 KB in size. The average request rate is 50 I/Os per sec-
ond, with an average throughput of about 6400 KB/second.
Each query generates a series of sequential I/Os. Visual in-
spection of the trace shows that many independent sequen-
tial streams have been interleaved together. This pattern
does not match any of the previously described attributes
in the Distiller’s library.

When given this trace, the Distiller first identifies the
need for a better

�
location � attribute. It then evaluates ev-

ery
�
location � attribute in the library and finds that they all

have demerit figures of at least 80%. Thus, the Distiller re-
ports that the library’s selection of

�
location � attributes is

insufficient and terminates.

In response, we added an analyzer called “run count
within state.” Instead of measuring run count from the pre-
vious I/O, this analyzer measures run count from the pre-
vious nearby I/O. (Here “nearby” refers to spatial locality.)
This analyzer can thus capture sequential runs, even if sev-
eral runs are interleaved (provided that the interleaved runs
are in different areas of the LU’s address space). We re-ran
the Distiller after adding the new analyzer to its library. The
demerit figure to evaluate the potential of “run count within
state” is only 17%, a great improvement over the existing
set of attributes.

The DSS workload illustrates the Distiller’s ability to
help direct the development of new attributes when neces-
sary. Because of the Distiller’s extensible structure, it is
easy to add analysis and synthesis modules for a new can-
didate attribute.

6. Conclusions and future work

This paper describes the design and evaluation of the
Distiller, a tool that automatically determines the set of at-
tributes necessary to specify a representative synthetic I/O
workload. The Distiller’s automation allows researchers
to inexpensively design representative synthetic workloads,
thereby enabling more comprehensive I/O system design
studies.

The Distiller is designed around several key principles:
(1) It builds the set of key attributes iteratively, adding one
attribute per iteration. (2) It takes a divide-and-conquer
approach by estimating the potential benefits of attribute
groups and evaluating attributes in the most important at-
tribute group first. (3) If its library of attributes proves in-
sufficient, the Distiller can identify what relationships must
be captured, thus helping to guide the invention of a new
attribute. (4) Its extensible structure facilitates the incorpo-
ration of new attributes as they become available.

We demonstrated the Distiller’s execution on both arti-
ficial and production workloads. These examples highlight
the Distiller’s key design principles and show that the Dis-
tiller can be an effective aid in the development of represen-
tative synthetic I/O workloads.

Our next step is to further improve the Distiller’s opera-
tion (e.g., by adding attributes to the library) and to carefully
examine the consequences of our design decisions (e.g.,
trade-offs between attribute-value precision and synthesis
accuracy, effects of search algorithm choices). We also plan
to further explore the properties of the Distiller’s solutions,
including optimality of the chosen attribute lists and repre-
sentativeness across a broad range of workloads and storage
system designs.

Acknowledgments

The authors wish to thank Eric Anderson, Mahesh Kalla-
halla, Terence Kelly, Ram Swaminathan and the anonymous
reviewers for their comments, which greatly improved the
quality of this paper. We also thank Eric Anderson, Mustafa
Uysal and John Wilkes for their feedback on earlier versions
of this work.

References

[1] R. R. Bodnarchuk and R. B. Bunt. A synthetic workload
model for a distributed system file server. In Proc. of SIG-

METRICS, pages 50–59, 1991.
[2] M. Calzarossa and G. Serazzi. Construction and use of mul-

ticlass workload models. Performance Evaluation, 19:341–
352, 1994.

[3] M. R. Ebling and M. Satyanarayanan. SynRGen: an extensi-
ble file reference generator. In Proc. of SIGMETRICS, pages
108–117, 1994.

[4] D. Ferrari. On the foundations of artificial workload design.
In Proc. of SIGMETRICS, pages 8–14, 1984.

[5] G. R. Ganger. Generating representative synthetic work-
loads: An unsolved problem. In Proc. of the Computer Mea-
surement Group Conf., pages 1263–1269, December 1995.

[6] M. E. Gomez and V. Santonja. A new approach in the anal-
ysis and modeling of disk access patterns. In Performance
Analysis of Systems and Software, pages 172–177, 2000.

[7] M. E. Gomez and V. Santonja. A new approach in the mod-
eling and generation of synthetic disk workload. In Proc.
of the 8th Intl. Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems, pages
199–206, 2000.

[8] B. Hong and T. Madhyastha. The relevance of long-range
dependence in disk traffic and implications for trace synthe-
sis. Technical Report UCSC-CRL-02-13, UC Santa Cruz,
Available from http://www.cse.ucsc.edu/research/reports/,
March 2002.

[9] B. Hong, T. Madhyastha, and B. Zhang. Cluster-
based input/output trace synthesis. Technical Re-
port UCSC-CRL-02-18, UC Santa Cruz, Available from
http://www.cse.ucsc.edu/research/reports/, March 2002.

[10] HP OpenView Integration Lab. HP Open-
View Data Extraction and Reporting.
Hewlett-Packard Company, Available from
http://managementsoftware.hp.com/library/papers/index.asp,
version 1.02 edition, February 1999.

[11] W. Kao and R. K. Iyer. A user-oriented synthetic workload
generator. In Proc. of the 12th Intl. Conf. on Distributed
Computing Systems, pages 270–277, 1992.

[12] K. Keeton, A. Veitch, D. Obal, and J. Wilkes. I/O charac-
terization of commercial workloads. In Proc. of 3rd Wkshp.
on Computer Architecture Support using Commercial Work-
loads, 2001.

[13] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3):17–29, March 1994.

[14] C. A. Thekkath, J. Wilkes, and E. D. Lazowska. Techniques
for file system simulation. Software—Practice and Experi-
ence, 24(11):981–999, November 1994.

[15] A. Veitch and K. Keeton. The Rubicon workload char-
acterization tool. Technical Report HPL-SSP-2003-13,
HP Labs, Storage Systems Department, Available from
http://www.hpl.hp.com/SSP/papers/, March 2003.

[16] M. Wang, A. Ailamaki, and C. Faloutsos. Capturing the
spatio-temporal behavior of real traffic data. In Performance
2002, 2002.

[17] M. Wang, T. M. Madhyastha, N. H. Chan, S. Papadimitriou,
and C. Faloutsos. Data mining meets performance evalua-
tion: Fast algorithms for modeling bursty traffic. In Proc. of
the 16th Intl. Conf. on Data Engineering, 2002.

