
Improving Student Performance Using Automated Testing
of Simulated Digital Logic Circuits

Zachary Kurmas
School of Computing

Grand Valley State University
kurmasz@gvsu.edu

ABSTRACT
JLSCircuitTester helps automate the testing and grading
of circuits built using digital logic simulators. With many
simulators, the testing and grading of circuits is tedious and
time consuming enough that students do not test their cir-
cuits thoroughly. JLSCircuitTester addresses this problem
by simplifying the means by which users specify sets of in-
put and expected output values. In addition, it automati-
cally verifies that the circuit under test produces the correct
output. The projects submitted during the pilot semester
contained approximately half as many errors as the previ-
ous semester’s projects. The automatic evaluation has also
simplified the grading of those projects.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance

General Terms
Verification

Keywords
Digital logic, JLS, simulation, testing

1. INTRODUCTION
One technique for helping students learn how CPUs work

is to have them use a digital logic simulator to build a CPU
and its major components [6]. Unfortunately, it is very time
consuming and difficult to evaluate the correctness of all but
the most basic circuits. Even moderately complex circuits
or CPUs are too complex to be graded visually. In addition,
none of the digital logic simulators that meet the constraints
outlined in [4] (free, multi-platform, appropriate balance be-
tween simplicity and utility, etc.) also provide a means for
automatically testing more than one set of input values at
a time. As a result, grading student projects can be tedious
and time consuming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’08, June 30–July 2, 2008, Madrid, Spain.
Copyright 2008 ACM 978-1-60558-115-6/08/06 ...$5.00.

More importantly, the difficulties of thoroughly evaluating
a circuit also discourage students from thoroughly testing
their projects. Thoroughly testing a circuit requires simulat-
ing that circuit using a large number of values for the input
pins and verifying that the output pins contain acceptable
values. Similar to testing software, when an exhaustive test
is not feasible, the sets of inputs must be chosen carefully
so as to include “corner cases” and ensure that all compo-
nents (the equivalent of code paths) are utilized. However,
if a simulator requires that each set of input values be en-
tered by hand, or if each output must be manually verified,
students tend to take the time to run only a few (in our
experience, well under 10) tests.
JLSCircuitTester addresses both problems by

• providing a means for students and instructors to eas-
ily specify multiple sets of input values and the corre-
sponding expected outputs, and

• automatically simulating the circuit under test using
each of the input sets and reporting any unexpected
output values.

During the first semester of use, the percentage of projects
with major errors decreased from about 75% to 33%. Dur-
ing the second semester of use, the error rate remained
around 33%; however, in contrast to previous semesters,
several of the imperfect submissions had their errors clearly
documented. In addition, the ability to automatically test
circuits reduced grading time. (Some of the reduction in
grading time resulted from submissions having many fewer
mistakes.)

Currently, JLSCircuitTester works only with the JLS
digital logic simulator [4]. However, we designed the tool
independently of any particular simulator and coupled it
loosely with JLS. We look forward to adding support for
additional digital logic simulators.

2. BACKGROUND
In a typical Computer Organization course, students learn

how to use basic logic gates (e.g., AND, OR, NOT) to build
the components of a CPU (adders, multiplexers, registers,
ALUs, etc.). These components are called digital logic cir-
cuits. Figure 1 shows an example circuit called a half-adder
that adds two bits. The interface between circuits and the
outside world are called “pins”. (Picture the pins that stick
out from a typical computer chip.) Each pin takes on one
of two values: 1 or 0. These input and output pins are
analogous to parameters and return values for methods. In

Figure 1: Testing a half adder using JLS

Figure 1, the input pins are named A and B. The output pins
are named Sum and Carry.

One of the most effective ways to teach students how a
CPU and its components work is to have them build exam-
ples. For reasons Wolffe, et al. outline in [6], students often
build digital logic circuits using a digital logic simulator: a
tool with which students can add and connect digital logic
gates and see how the resulting circuit operates.
JLS1 is one of many digital logical simulators. We use it

because (1) it is written in Java and can, therefore, run on
many platforms, (2) it is free, and (3) it provides an excellent
tradeoff between complexity and usability. The most pow-
erful simulators allow (or even require) the user to specify
the electrical properties of the transistors and wires. The
learning curve on these simulators is usually too steep for
a typical Computer Organization class.2 In contrast, some
very basic simulators emphasize simplicity and lack the abil-
ity to bundle wires together. Such simulators are useful for
exploring the basics of digital logic; but, are not practical for
building complete CPUs. In [4], Poplawski further discusses
the criteria that determine how well-suited a particular dig-
ital logic simulator is for a typical Computer Organization
or Computer Architecture classroom.

3. MOTIVATION
To test a circuit using JLS, the user must (1) add an el-

ement called a Signal Generator to the circuit under test,
(2) type text into the Create Signal Specification window to
describe the desired input values, (3) run the simulator, and
(4) compare the values on the output pins to the expected
values. (See Figure 1.) This process works very well when

1JLS stands for Java Logic Simulator.
2Such simulators may, however, be appropriate for Electrical
or Computer Engineering courses.

examining the circuit closely and looking for specific prob-
lems (i.e., “debugging”the circuit). However, it is not as well
suited for running a thorough test of a circuit. Testing a cir-
cuit like the half adder, which has only four possible input
combinations is manageable, although somewhat tedious.

Consider a more complex circuit, like the 16-bit signed
adder shown in Figure 2. In this circuit, the inputs InputA

and InputB each represent a group of 16 pins.3 Together
with the 1-bit CarryIn, there are 233 possible input combi-
nations. It is clearly not practical to test all possible combi-
nations. Fortunately, software engineering principles allow
us to choose a set of a few dozen combinations and be fairly
confident that a circuit that passes those tests is correct.

Pedagogical motivation: The problem is that most stu-
dents lack either the time or the patience to set up more
than a few tests by hand. As a result, these students sub-
mit under-tested, incorrect circuits. In addition to receiving
a low grade, students who turn in incorrect circuits miss
the opportunity to discover and correct misunderstandings
about the construction of the circuits they are building.

Instructional motivation: The tedium of running tests
by hand is also problematic for instructors. While it may be
reasonable to require a student to run four tests on a half
adder (or even 10 to 20 tests on a signed adder) by hand;
it is not practical for an instructor to repeat this process
for each of the students in a course. Thus, in addition to
improving learning, automating the testing process will save
the instructors time.4

3Figure 2 does not show the size of the input.
4JLS does have a batch mode that instructors can use to
partially automate the evaluation process. Its main limita-
tion is that the output is designed for humans to read and
does not lend itself well to parsing. Thus, the instructor can
automatically run the simulator, but must scan the output
for mistakes.

Figure 2: A signed adder with overflow detection

4. RELATED WORK
In [1], Edwards discusses how using test driven develop-

ment to promote “reflection-in-action” (thinking critically
about the program rather than making random changes and
hoping the errors go away) can improve students’ program-
ming ability. He then discusses a tool called Web-CAT that
supports his teaching approach. Our tool provides for cir-
cuit design several of the features that Web-CAT provides
for program design. In particular, JLSCircuitTester al-
lows students to define their own tests, and automatically
determine whether their circuits pass their tests. It does not
automatically assign a score to a circuit.

5. THE TOOL
JLSCircuitTester is a command-line tool written in Java

that automates the testing of simulated digital logic circuits.
Users specify the circuit to test and the list of tests to run.
The tool then simulates the operation of the circuit once for
each set of input values and reports any tests for which the
observed and expected output values differ.

5.1 Input specification
Users generate text files listing (1) the values to be placed

on the input pins and/or (2) the values to which any registers
and memories are to be initially set. Figure 3 shows a file
that thoroughly tests the half adder shown in Figure 1.

Notice that A and B each have a list of two values. The
tool produces four tests to represent the four unique com-
binations of elements from these lists. Consequently, the
output pins have lists of four values each.

Figure 4 shows an example test file that can be used to
test a 16-bit signed adder. The NAMED_VALUE_LISTS section
allows users to specify lists of numbers that can be referenced
by multiple tests. Notice that the user can place simple
expressions in the lists of numbers, thereby making it easier
to specify “corner cases” (e.g., values near a power of 2).
As with the previous example, the tool produces one test
for each combination of input values; thus the section of
code labeled no_overflow specifies 288 tests, and the section
labeled overflow specifies an additional 578 tests.

This file tests a basic half adder with

one-bit inputs named "A" and "B", and

one-bit outputs named "Sum" and "Carry".

BEGIN test1

INPUTS

A [0, 1]

B [0, 1]

OUTPUTS

Sum [0, 1, 1, 0]

Carry [0, 0, 0, 1]

Figure 3: Test file for half adder

Programmed Value Lists: Instead of listing all the
desired input values by hand, users can specify an algorithm
to generate a list of input values. For example RANGE(0, 10,

2) generates the list of even integers between 0 and 10.
Flexibility: JLSCircuitTester is written in Java. Each

test is represented by an instance of the InputSet class. An
InputSetLoader object is responsible for creating InputSet

objects based on the input file. Users can implement their
own test specification formats (e.g., XML) by implementing
their own subclass of InputSetLoader.

5.2 Output specification
The user may specify a test’s expected output in one of

two ways: (1) explicitly list the desired output value when
specifying the input values, or (2) provide a Java class (called
an Output Set Generator) to calculate the output value. Fig-
ure 3 lists the desired output values in the OUTPUTS section
of the test file. This technique is useful when the number
of tests is small and the set of desired output values can be
easily enumerated.

In contrast, the input file in Figure 4 specifies that the
class UnsignedAdderOutputSet is responsible for calculat-
ing the correct output value. This technique is useful when
the number of tests is large. In this case, it would be dif-
ficult to type the list of 288 expected output values for the

Name of Java class that computes the correct answer

OUTPUT_SET_TYPE SHARED UnsignedAdderOutputSet

NAMED_VALUE_LISTS

The sum of any two smallPositive integers will not cause an overflow.

smallPositive [0, 1, 2, 3, 4, 5, 10, 15, 16, 17, 30000, 2^15 - 1]

allPositive [smallPositive, 2^15, 2^15 + 1, 2^15 + 16385,

2^16 - 2, 2^16 -1]

These tests should not produce any overflow

BEGIN no_overflow

INPUTS

InputA smallPositive

InputB smallPositive

CarryIn [0, 1]

These tests may produce overflow.

BEGIN overflow

INPUTS

InputA allPositive

InputB allPositive

CarryIn [0, 1]

Figure 4: Test file for a 16-bit signed adder

no_overflow tests without making any mistakes. Instead,
the user provides a Java class that reads the input values,
adds the values of inputs A and B, checks for overflow, and
sets the output pins accordingly.

5.3 CPU testing
One typical Computer Architecture project is to have stu-

dents use a digital logic simulator to construct their text-
book’s example CPU. Such CPUs are typically designed pri-
marily to illustrate the key aspects of CPU construction.
Therefore, in most cases, they contain only a minimal set of
features and are considerably simpler than real CPUs. Our
tool provides support for testing such CPUs.

First, users need a way to produce machine code. The
textbook CPUs often have a machine language that is simple
enough to code by hand; however, such “human assembly”
is tedious and error prone. With our tool, instructors can
add an assembler to the output set generator.

Second, users need a way to specify the desired output. In
the case of CPUs, the “output” is the final state of the regis-
ters and RAM. Listing the final state of RAM could be quite
challenging for some programs. With our tool, instructors
can use a CPU simulator as the output set generator.

We provide an output set generator for testing MIPS-like
CPUs (such as the ones presented in both the Patterson and
Hennessy [3] and Harris and Harris [2] textbooks). Instead
of a file similar to Figures 3 and 4, users pass as input a MIPS
assembly program. The output set JLSMipsCPUTester then:

1. Assembles the code using the assembler built into the
MARS MIPS Simulator [5].

2. Loads the machine code into the RAM of the CPU
under test.

3. Uses JLS to simulate the running of the CPU under
test.

4. Simulates the running of the assembly code using MARS.

5. Compares the final state of both simulations and re-
ports the results.

Thus, students can test their CPU using almost5 any
MIPS assembly code.

6. RESULTS
We piloted JLSCircuitTester in a Computer Architec-

ture course that assigns three projects: (1) implement an
ALU that can add, subtract, and multiply signed integers
and detect overflow; (2) implement the single-cycle CPU
presented in [2] and [3], and (3) implement microcode for
the multi-cycle CPU presented in [2] and [3]. Historically,
students would submit these projects with an unacceptable
number of mistakes. Therefore, students are required to re-
submit their projects until they contain only minor flaws.

In Winter, 2007, approximately 75% of the initial sub-
missions contained serious mistakes. We piloted our tool in
Fall, 2007. That semester, fewer than 33% of the initial sub-
missions contained serious mistakes. In Winter, 2008, the
percentage of submissions with serious mistakes remained
around 33%. However, several of the incorrect submissions
came with lists of known problems. Thus, although these
students were unable to fix the problems by the submission
deadline, they had tested their circuits well enough to know
what the problems were.

Although the project scores improved, scores of those exam
questions related to ALU and CPU design did not improve.
Fall 2007 students performed worse overall than Winter 2007
students. Winter 2008 students performed better than the
previous two semesters’ students. We suspect these results
primarily reflect differences in composition of each class.

This analysis is informal. Each class contained approx-
imately 8 teams of two students. A more rigorous analy-

5The student’s CPU may not implement every MIPS in-
struction.

sis would require withholding JLSCircuitTester from stu-
dents. Given that the improvement in project scores sug-
gests that our tool is beneficial, conducting a more controlled
experiment does not appear to be in the best interest of the
students.

We do not have a record of grading times prior to the
introduction of our tool. However, anecdotally, grading the
projects in Fall 2007 and Winter 2008 was considerably eas-
ier and less frustrating than Winter 2007. (In other words,
we can’t prove that JLSCircuitTester saves time, but it
sure feels like it does.)

7. FUTURE WORK
Presently, our tool directly supports the testing of only

those CPUs that can also be simulated by the MARS MIPS
simulator. Such CPUs must use the MIPS machine language
and must utilize registers in a manner similar to MIPS ($r0
fixed at 0, $r1 reserved for the assembler, etc.). We expect
that our next step will be to add support for the testing
of CPUs presented in several different textbooks, thereby
making our tool useful to more instructors.

The current version of our tool works only with the JLS
digital logic simulator. We plan to add support for several
additional compatible simulators, then move the core func-
tionality into a library that will allow others to easily add
support for new digital logic simulators. Currently, to be
compatible with JLSCircuitTester, a digital logic simula-
tor must either (1) have a Java API, or (2) have a batch
mode with an output format suitable for parsing (as op-
posed to an output format designed primarily for reading
by users).

During the past two semesters, we provided students a lot
of help in generating thorough test cases. In the long term,
we would like students to be capable of generating their
test cases with minimal help. Reaching this goal requires
that students learn testing techniques well before reaching a
senior-level Computer Architecture course. Several of us in
the School of Computing are looking to increase the coverage
of testing in courses throughout the curriculum.

8. AVAILABILITY
JLSCircuitTester is available on the web at

http:/www.cis.gvsu.edu/~kurmasz/JLSCircuitTester. In
addition, the web page contains several example assignments.

Acknowledgments
We would like to thank David Poplawski for his support of
this project — especially his advice and his work modify-
ing JLS to make it integrate better with JLSCircuitTester.
We also thank Pete Sanderson for his efforts making MARS
integrate better with JLSCircuitTester. Finally, we thank
Christian Trefftz, Paul Jorgensen, Steve Salerno, and Robert
Adams for their contributions.

9. REFERENCES
[1] S. H. Edwards. Using software testing to move students

from trial-and-error to reflection-in-action. In SIGCSE
’04: Proceedings of the 35th SIGCSE technical
symposium on Computer science education, March
2004.

[2] D. M. Harris and S. L. Harris. Digital Design and
Computer Architecture. Morgan Kaufmann, 2007.

[3] D. A. Patterson and J. L. Hennessy. Computer
Organization and Design: The Hardware/Software
Interface. Morgan Kaufmann, 3 edition, 2005.

[4] D. A. Poplawski. A pedagogically targeted logic design
and simulation tool. In WCAE ’07: Proceedings of the
2007 workshop on Computer architecture education,
pages 1–7. ACM, 2007.

[5] K. Vollmar and P. Sanderson. Mars: an
education-oriented mips assembly language simulator.
In SIGCSE ’06: Proceedings of the 37th SIGCSE
technical symposium on Computer science education,
pages 239–243. ACM, 2006.

[6] G. S. Wolffe, W. Yurcik, H. Osborne, and M. A.
Holliday. Teaching computer organization/architecture
with limited resources using simulators. In SIGCSE
’02: Proceedings of the 33rd SIGCSE technical
symposium on Computer science education, pages
176–180. ACM, 2002.

