
Using the Distiller to Direct the Development of Self-Configuration Software

Zachary Kurmas
College of Computing

Georgia Tech
kurmasz@cc.gatech.edu

Kimberly Keeton
Storage Systems Department

Hewlett-Packard Labs
kkeeton@hpl.hp.com

Abstract

Many storage systems have become so complex that that
the system administrator’s salary represents almost half of
the total cost of ownership. One approach to reducing this
cost is to develop storage systems that can configure and
manage themselves. Unfortunately, our ability to develop
such software has been hindered by a limited understanding
of how workloads and storage systems interact.

In [10], we presented the design of the Distiller — our
tool that automates the process of finding a workload’s key
performance-affecting attributes. In this paper, we distill
three production workloads and show that the values of the
chosen attributes contain information that will help a self-
configuring disk array choose a reasonable prefetch length
and RAID stripe unit size. We also discuss how the chosen
attributes may help direct the development of algorithms
that compute near-optimal prefetch lengths and stripe unit
sizes.

1. Introduction

Management is quickly becoming the dominant cost of
many computer systems. Some systems have become so
complex that only experts, who tend to be expensive, can
efficiently configure and manage them. The storage sys-
tem is a leading example of this trend. In the 2002 FAST1

keynote address, David Patterson noted that the system ad-
ministrator’s salary represents almost half of the total cost
of ownership for a storage system. The complexity of sys-
tems, and the consequent costs, will continue to increase as
demands for high-performance I/O increase.

One solution is to develop storage systems that can con-
figure and manage themselves. Such systems must make
many decisions including: (1) which hardware to buy and
how much, (2) how to organize the individual disks (e.g.,
RAID groups and RAID levels), and (3) how to set various
parameters (e.g., RAID stripe unit size, prefetch length).

1FAST: File and Storage Technologies

The optimal configuration depends on the characteristics of
the intended workload and the business’s reliability and per-
formance requirements.

We see two general approaches to automating these con-
figuration decisions: a “compare” approach and a “com-
pute” approach. A storage system using the compare ap-
proach will make configuration decisions based on the
known behavior of similar workloads. For example, Hip-
podrome estimates the utilization of a previously unstudied
workload on a given storage system configuration by look-
ing up in a table the utilization of a “similar” workload on
the same storage system [1]. In contrast, a storage system
using the calculate approach will compute a configuration
directly based on an analysis of the workload. For example,
[2] gives rules for choosing the RAID level based on the
number and size of the workload’s write requests.

The key to both the compare and calculate approaches is
choosing the appropriate analyses. When using the compare
approach, one must choose the metrics by which two work-
loads will compared. When using the calculate approach,
one must choose the analyses that will provide the informa-
tion on which the configuration will be based.

Researchers have proposed many metrics for quantifying
workload characteristics [4, 6, 7, 8, 13, 14, 16]; however, se-
lecting a set of metrics that captures precisely those aspects
of a workload that should be compared and/or analyzed cur-
rently requires a trial-and-error process that, until recently,
has been impractically tedious.

We have developed the Distiller — a tool that automates
this trial-and-error process. Specifically, given a trace of
a block-level I/O workload and a list of candidate metrics
(formally called attributes), the Distiller chooses a set of
“key” attributes that describe the workload’s performance-
affecting properties. When using a comparison approach,
the chosen attributes will help define a similarity metric
that is based on the workload’s performance. When using a
calculate approach, the chosen attributes will highlight the
causes of the workload behavior observed, thereby aiding
the development of models that can calculate a good con-
figuration.

This paper addresses two questions related to the Dis-
tiller’s potential contribution to storage systems using the
calculate approach:

Do the chosen attributes apply across several different
hardware configurations? The Distiller chooses a set of
“key” attributes that provide insight into the behavior of the
workload on a single storage system configuration; how-
ever, in order to choose a configuration based on the val-
ues of the attributes, we must be sure the chosen attributes
also contain information that can provide insights into the
workload’s behavior on the other configurations under con-
sideration. In this paper, we show that the chosen attributes
contain information that allows us to understand the effects
of modifying a storage system’s prefetch length and RAID
stripe unit size.

How are the attributes chosen by the Distiller related
to the observed trends? Identifying a workload’s key at-
tributes is only the first step in using the calculate approach.
The bigger challenge is to associate the values of those at-
tributes with the disk array’s performance for the different
configurations. We will discuss how the attributes chosen
by the Distiller fit our current understanding of workload
performance and how researchers might potentially use this
information.

The remainder of the paper is organized as follows: Sec-
tion 2 provides a brief overview of the Distiller’s design.
Section 3 describes the experimental environment and the
workloads used. Section 4 presents our results. Finally,
Section 5 discusses future work; and Section 6 concludes.

2. Our approach

The Distiller is our tool for identifying a set of attributes
that captures a workload’s performance-affecting proper-
ties. An attribute is the name of a metric used to measure
workload characteristics (e.g., mean request size, read per-
centage, or distribution of location values). An attribute-
value is an attribute paired with the measurement itself (e.g.,
a mean request size of 8 KB, or a read percentage of 68%).

The Distiller takes as input a target workload trace and
a library of attributes. It then automatically searches for a
subset of those attributes that effectively describes the tar-
get workload’s performance-affecting properties. The Dis-
tiller evaluates how well a given set of attributes captures the
performance-affecting properties by (1) generating a syn-
thetic workload with the same values for the chosen at-
tributes, (2) issuing both workloads to the storage system
under test, then (3) comparing the performance of the two
workloads. If the two workloads perform differently, then
we know that there is some important property that is not
described by the chosen attributes. If they have similar per-
formance, then we argue that the attributes have captured
the important performance-related information.

Add New
Attributes

Generate
Synthetic
Workload

Compute
Attribute-

values

Compare
Behavior
to Target

Is
Behavior
Similar?

No

Yes

Initial
Attribute

List

Target
Workload

Representative
Synthetic
Workload

Figure 1. The Distiller’s iterative loop.

2.1 Related work

The Distiller is unique because, instead of attempting to pre-
serve a set of attributes chosen a priori, it searches through
a set of previously developed and studied attributes and gen-
eration techniques (e.g., [4, 5, 6, 7, 8, 13, 14, 16]) then
chooses those attributes that are most appropriate for the
target workload and storage system under test. These exist-
ing techniques serve as the Distiller’s library.

Researchers have used principal component analysis
(PCA) to identify the attribute-values that concisely de-
scribe a set of batch computational workloads [3]. Given a
large set of workloads and a set of attribute-values that char-
acterize those workloads, PCA computes new variables,
called principal components, that best describe the work-
loads. These principal components are uncorrelated linear
combinations of the original attribute-values. Choosing at-
tributes in this manner presents several challenges: First,
to use PCA to identify performance-related attributes, we
need a set of workloads with similar performance. We do
not currently have access to such a set. Second, the resulting
principal components are linear combinations of attributes
rather than a subset of the initial list of attributes, and hence
may not have an intuitive meaning.

Standard feature selection techniques are used to find a
small set of features (in our case, attributes) that can be used
to differentiate objects in a set (in our case, workloads).
Again, our set of workloads is not large enough to be effec-
tively analyzed using standard feature selection techniques.

2.2 The Distiller

At a high level, the Distiller iteratively builds a list of “key”
attributes — attributes that noticeably influence the target
workload’s performance. During each iteration, the Dis-
tiller identifies one additional key attribute, adds it to the
list, then tests the quality of the resulting synthetic work-
load. This loop (shown in Figure 1) continues until either
(1) the difference between the performance of the synthetic
and target workloads is below some user-specified thresh-
old, or (2) the Distiller is not able to produce a more accu-
rate synthetic workload by adding attributes in its library.

Evaluating a synthetic workload’s performance takes

tens of minutes. Therefore, we limit the number of interme-
diate workloads the Distiller builds and evaluates by parti-
tioning the library of attributes into groups and investigating
only those groups that contain at least one “key” attribute.
Each attribute group is a set of attributes whose values are
calculated using the same set of I/O request parameters. For
example, the {location, operation type} group contains only
those attributes that consider both location and operation
type (e.g., separate histograms of location read requests and
write requests).

To determine whether an attribute-group contains any
key attributes, we compare the performance of two syn-
thetic workloads: The first preserves none of the attributes
in the group under test by choosing the values of the pa-
rameter(s) under study independently at random from the
distribution of values in the target workload. The second
preserves every attribute in that group by using the actual
list of values from the target workload. The difference in
performance of these two workloads is an estimate of the
importance of the attributes in the group. Should there be
little or no difference in performance, we know that we need
not evaluate individual attributes in that group because the
default distribution produces similar performance.

Once the Distiller has identified an attribute group that
contains a key attribute, it searches that group. The Distiller
evaluates the importance of an individual attribute by com-
paring the performance of two synthetic workloads: The
first workload preserves the attribute under test; the second
does not. The Distiller orders the attributes in the chosen
group based on the amount of data necessary to represent
the measured attribute-value. It then evaluates the attributes
in order of increasing size and chooses the smallest attribute
that meets a given accuracy threshold.

In practice, the synthetic workloads compared must be
designed carefully so that the only differences between
them are related to the attribute group under study. We refer
the reader to [10] for details of the Distiller’s architecture.

3. Experimental environment

This section discusses the storage system, workloads,
and supplementary software used to evaluate the Distiller.

3.1 Storage system

In Section 4, we use the Distiller to analyze the workloads
described in Section 3.2. The disk arrays currently available
to us are too small to handle these workloads. Therefore,
we use the Pantheon disk array simulator to simulate the
execution of our workloads [15].

Pantheon simulates disk arrays comprising several disks
connected to one or more controllers by parallel SCSI
busses. The controllers have large non-volatile-RAM
caches. (This general architecture is similar to the FC-60

Table 1. Summary of Workloads

Workload parameters
T’put Read Arrival rate

Workload I/Os (MB/s) percent (I/Os / sec) LUs
OpenMail 1287941 2.33 28% 358 22
OLTP 4257935 1.19 51% 538 37
DSS 332394 32.14 100% 185 4

used in [10].) Pantheon provides many additional config-
uration parameters including number and type of compo-
nent disks, size of cache, prefetch length (minimum amount
of data prefetched upon each read request), high- and low-
water marks (points at which the cache begins de-staging
dirty data), and size of the RAID stripe unit. Table 2 pro-
vides the Pantheon configuration used to study each work-
load.

3.2 Workloads

In this section, we discuss the high-level characteristics of
the workloads we used to evaluate the Distiller. Table 1
summarizes these characteristics.

OpenMail: This one hour trace of the OpenMail Email
server contains 12897941 I/Os for a mean request rate of
358 I/Os per second. This trace comprises 22 LUs. When
investigating this workload, we configured Pantheon to sim-
ulate a disk array with a 1GB cache and 180 9GB Seagate
disks arranged into 45 18GB LUs.

OLTP: This 1994 online transaction processing (OLTP)
trace measures HP’s Client/Server database application run-
ning a TPC-C-like workload at about 1150 transactions per
minute on a 100-warehouse database. When investigating
this workload, we configured Pantheon to simulate a disk
array with 80 1GB Wolverine disks arranged into 40 1GB
LUs. The simulated disk array has a 256MB cache. This
configuration is nearly identical to the configuration of the
disk array on which the trace was collected.

DSS: This decision support system (DSS) trace was col-
lected on an audited TPC-H system running the throughput
test (multiple simultaneous queries) on a 300 GB scale fac-
tor data set. This workload comprises 8373997 I/Os over
80 LUs. Most LUs are read-only; nearly all I/Os on these
LUs are 128 KB in size. Each query generates a series of se-
quential I/Os. Visual inspection of the read-only LUs shows
many independent sequential streams interleaved together.

Repeatedly analyzing, synthesizing, and simulating the
entire DSS workload requires considerable computational
and storage resources. Although not intractable, we decided
that our limited shared resources would be better used ana-
lyzing a variety of workloads. Therefore, we investigate the
four busiest LUs, whose characteristics are summarized in
Table 1.

Table 2. Summary of Pantheon Configurations

Num Num Num raid Disk
workload disks busses groups size disk type Cache size Bus rate
OpenMail 180 4 45 9 GB Seagate Cheetah 10K rpm 1 GB 40 MB/s
OLTP 80 2 40 1 GB Wolverine III (HPC2490A) 256 MB 40 MB/s
DSS 16 4 4 9 GB Seagate Cheetah 10K rpm 256 MB 100 MB/s

3.3 Software

The Distiller utilizes several software packages: Our work-
load analysis tool, Rubicon, takes a workload trace and
an attribute list as input and produces the attribute-values
that characterize the workload [12]. Our workload gener-
ation tool takes a workload characterization (i.e., a set of
attribute-values) as input and generates a synthetic work-
load matching that characterization. Pantheon simulates the
execution of a workload. As it does, it calculates the perfor-
mance of the simulated disk array.

To collect workload traces, we use the Measurement In-
terface Daemon (midaemon) kernel measurement system,
part of the standard HP-UX MeasureWare performance
evaluation suite [9]. For each I/O request, the midaemon
provides the workload parameters. We do not attempt to
model the CPU time between I/Os. Consequently, chang-
ing the disk array configuration does not affect the synthetic
workload’s arrival pattern.

3.4 Distiller configuration

Before running the Distiller, the user must select (1) a de-
merit figure to quantify the difference between the perfor-
mance of two workloads, and (2) a threshold value below
which attribute groups are not explored and individual at-
tributes are not considered “key” attributes. We discuss
three demerit figures:

1. Mean response time: The mean response time (MRT)
is the simplest, but least accurate demerit figure. A
synthetic workload should have a mean response time
similar to the workload it models; however, two work-
loads with very different behaviors can have similar
mean response times. We express this demerit figure
as the percent difference between the mean response
times of the compared workloads.

2. Root-mean-square: The root-mean-square (RMS) is
the demerit figure used in the related work (e.g., [4],
[11]). Specifically, RMS is the root mean square of the
horizontal distance between the response time cumula-
tive distribution functions (CDFs) for the synthetic and
target workloads. We normalize this demerit figure by
presenting it as a percentage of the mean response time
of the target workload.

The RMS demerit figure is useful because it mea-
sures similarity based on the performance observed
by the user. However, because the RMS metric sums
the square of horizontal differences, workloads whose
CDFs have horizontal “plateaus” tend to have very
large RMS values — especially when those plateaus
are near 1 on the y-axis (i.e., “heavy tails”).

3. Log area: The log area demerit figure is the area be-
tween two CDFs plotted with a log scale on the x-axis
(as are Figures 2 through 4). Using the log scale causes
differences at all percentiles to be weighted equally.
This demerit figure more accurately reflects the sim-
ilarity of the workload’s overall performance, but de-
emphasizes differences most noticeable to the user.

When running the Distiller, we use the log area demerit
figure with threshold of 7.5%. (These configurations were
chosen empirically based on our experience.) The Distiller
stops when it either (1) produces a synthetic workloads with
a log area demerit figure below 10%, or (2) when it deter-
mines that the attributes in the library will not produce a
more accurate synthetic workload. (Note that the demerit
figure and threshold chosen as terminating conditions need
not be the same as the demerit figure and threshold used
internally to select attributes and attribute groups.)

4. Experimental results

In this section, we analyze the Distiller’s ability to iden-
tify performance-affecting attributes, evaluate how well the
chosen attributes capture information related to a range of
prefetch lengths and stripe unit sizes, and discuss how the
workload behaviors observed are related to the values of the
chosen attributes.

Figures 2 through 4 show the accuracy of the synthetic
workloads specified by the Distiller. Table 4 quantifies the
accuracy of these synthetic workload using the demerit fig-
ures discussed in Section 3.4. These demerit figures are
necessary to allow the Distiller to run automatically in a
reasonable amount of time; however, they are not necessar-
ily the best measure of the overall quality of the attributes
the Distiller chooses.

The true quality of a set of attributes should ultimately be
based upon whether the attributes contain enough informa-
tion about the workload’s performance to meet the user’s

Table 3. Summary of Attributes Chosen

Workload Attribute
OpenMail Separate distributions of read and write locations

Markov model of operation type
Distribution of request size
Interarrival time clustering [8]

OLTP Separate distributions of read and write locations
Distribution of operation type run lengths
Distribution of request size
Markov model of interarrival time
(with run counts of short interarrival times)

DSS List of interleaved runs of location
Distribution of operation type
Distribution of request size
Distribution of interarrival time

Table 4. Summary of Initial Synthetic Workloads

Workload MRT RMS Log area
OpenMail 8.3% 33% 10%
OLTP 26% 176% 30%
DSS 5% 2% 2%

needs. In the context of a self-configuring storage system
using the “compute” approach, we will show that the chosen
attributes contain enough information to predict the effects
of modifying the simulated disk array’s prefetch length and
RAID stripe unit size. We will then discuss how the ob-
served behaviors are related to the values of the chosen at-
tributes. Table 3 shows the attributes the Distiller chose for
each workload.

4.1 Prefetch length

Workloads that exhibit a high degree of spatial locality or
sequentiality may benefit from prefetching. Upon receiving
a request to read the data in sectors xstart through xend,
a disk array configured to prefetch i sectors of data will
also read the data in sectors xend + 1 through xend + i and
place it in the cache. Prefetching improves workload perfor-
mance when the prefetched data is requested before being
evicted from the cache; prefetching degrades performance
when unrequested prefetch data delays other I/O requests.

To show that the chosen attributes capture enough infor-
mation related to prefetch length, we issued each produc-
tion workload to a simulated disk array several times, vary-
ing the prefetch length from 0 to 1MB. We then issued the
synthetic workloads to the same disk arrays using the same
prefetch lengths and compared the mean response times.
Figures 5 through 7 show the results.

4.1.1 OpenMail and OLTP

As shown in Figure 5, the original and synthetic OpenMail
workloads produce the same trend: The mean response time
increases slowly for prefetch lengths less than 256KB, then
increases very rapidly when the prefetch length is greater
than 256KB. Similarly, Figure 6 shows that the original and
synthetic version of the OLTP workload also produce the
same trend. Thus, we see that the attributes chosen by the
Distiller can help predict the effects of modifying the disk
array’s prefetch length.

The attribute that most influences the OpenMail and
OLTP workloads is the separate distributions of read loca-
tions and write locations. This is because the disk array’s
NVRAM cache allows all writes to be completed as soon
as they are stored in the cache, whereas reads that miss in
cache are not completed until the data has been retrieved
from disk. Consequently, it is essential that the reads and
writes (which have very different amounts of temporal lo-
cality) be treated separately.

Notice that both the OpenMail and OLTP workloads can
be accurately synthesized using only distributions of loca-
tion. This indicates that there is little or no spatial local-
ity in either workload. This observation is consistent with
Figures 5 and 6, which show that neither workload benefits
from prefetching. Thus, the Distiller’s choice of attributes
has provided a useful hint about how to configure prefetch-
ing for these workloads.

4.1.2 DSS

As with the OpenMail and OLTP workloads, Figure 7
shows that the mean response times of the target and syn-
thetic DSS workloads remain close at all prefetch lengths.

The DSS workload is a set of concurrent database
queries. Each query produces several long runs of 128KB
I/O requests. These interleaved runs represent a high degree
of spatial locality. Consequently, we expect that increas-
ing the prefetch length will increase performance. Figure 7
shows that this is, in fact, the case. However, the causes of
the increases in mean response time at 64KB and 5512KB
are not as obvious.

From the distribution of request size, we know that al-
most every request is 128KB. When the prefetch length is
less than 128KB, future requests are queued behind prefetch
requests; however, because the prefetched data does not
complete the next request, the next request still requires a
physical disk access. As a result, most of the time spent
prefetching is wasted, which explains the increase in re-
sponse time as prefetch length varies from 0 to 64KB.

Mean response time also begins to increase when
prefetch length reaches 512KB (4 I/Os). The cause of this
trend is not clear because a prefetch length of 512KB will
not fill the cache and cause it to evict unused prefetched

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-06 1e-05 0.0001 0.001 0.01

C
um

ul
at

iv
e

fr
ac

tio
n

of
 I/

O
s

Latency in seconds

Performance of Synthetic Open Mail Workload

Original OpenMail workload
Synthetic OpenMail workload

Figure 2. Performance of Syn-
thetic OpenMail Workload

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01

C
um

ul
at

iv
e

fr
ac

tio
n

of
 I/

O
s

Latency in seconds

Performance of Synthetic OLTP Workload

Original OLTP workload
Synthetic OLTP workload

Figure 3. Performance of Syn-
thetic OLTP Workload

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01

C
um

ul
at

iv
e

fr
ac

tio
n

of
 I/

O
s

Latency in seconds

Performance of Synthetic DSS Workload

Original DSS workload
Synthetic DSS workload

Figure 4. Performance of Syn-
thetic DSS Workload

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 10 100 1000

M
ea

n
re

sp
on

se
 ti

m
e

(m
ill

is
ec

on
ds

)

Prefetch length (KB)

Varying prefetch length for OpenMail

Original OpenMail workload
Synthetic OpenMail workload

Figure 5. Mean resp. time of
OM as prefetch length varies

 0

 5

 10

 15

 20

 25

 1 10 100 1000

M
ea

n
re

sp
on

se
 ti

m
e

(m
ill

is
ec

on
ds

)

Prefetch length (KB)

Varying prefetch length for OLTP

Original OLTP workload
Synthetic OLTP workload

Figure 6. Mean resp. time of
OLTP as prefetch length varies

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000

M
ea

n
re

sp
on

se
 ti

m
e

(m
ill

is
ec

on
ds

)

Prefetch length (KB)

Varying prefetch length for DSS

Original DSS workload
Synthetic DSS workload

Figure 7. Mean resp. time of
DSS as prefetch length varies

data. The disk array does not prioritize I/Os; therefore, we
suspect that non-prefetched I/Os are being queued behind
prefetch requests. This situation emphasizes the fact that
finding key attributes is only one step toward writing self-
configuring disk arrays. We must also understand the disk
array’s hardware and firmware.

4.2 Stripe unit size

The disk arrays simulated by Pantheon use a RAID 1/0 (e.g.,
striped mirror) configuration. The disk array’s disks are par-
titioned into RAID groups where half of the disks in each
group mirror the other half. The stripe unit size defines
how much data is stored contiguously on one disk before
moving to the next disk in the RAID group. The stripe
unit size affects (among other things) at which point sev-
eral disks will be simultaneously servicing a single I/O. If
a request spans several stripe units, then the requested data
will be located on several disks. This parallel access can im-
prove performance by reducing the transfer time; however,
it can also degrade performance by increasing the number
of seeks (i.e., causing two different disks to seek to similar
locations, instead of allowing the second disk to seek to the
location of a different request).

Figures 8 through 10 demonstrate the ability of the syn-
thetic workloads to predict the effects of varying the stripe
unit size from 2KB to 2MB.

4.2.1 OpenMail

The synthetic OpenMail workload predicts the general
trend: Mean response time decreases as stripe unit size in-
creases, until the stripe unit size reaches 128KB. At this
point, the mean response time remains steady.

This trend of decreasing response time as stripe unit size
increases is also consistent with the OpenMail workload’s
lack of spatial locality. The stripe unit size determines how
much data is grouped onto one disk. If a request’s size is
less than the size of the stripe unit, only one disk serves the
request. Otherwise, more than one disk serves the request.
Because the OpenMail workload has so little spatial local-
ity, we expect seek time to dominate the cost of serving re-
quests. Using a large stripe unit size will cause all requests
to be served by only one disk, leaving the second disk free
to serve future requests. If more than one disk serves each
request, then future requests will be queued while waiting
for all disks to move their read heads.

Notice also that the mean response time decreases
rapidly at first, then levels off for larger stripe unit sizes.
A large percentage of the workload’s requests are 1KB and
8KB. Thus, the benefit of further increases in stripe unit size
decreases once the stripe unit size reaches 8KB.

4.2.2 OLTP

The synthetic OLTP workload also exhibits the same behav-
ior as the original workload. Stripe unit size has no effect

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 10 100 1000

M
ea

n
re

sp
on

se
 ti

m
e

(m
ill

is
ec

on
ds

)

Prefetch length (KB)

Varying stripe unit size for OpenMail

Origial OpenMail workload
Synthetic OpenMail workload

Figure 8. Mean resp. time of
OM as stripe unit size varies

 6

 7

 8

 9

 10

 11

 12

 13

 1 10 100 1000

m
ea

n
re

sp
on

se
 ti

m
e

(m
ill

is
ec

on
ds

)

Stripe unit size (KB)

Varying stripe unit size for OLTP (4 disk LUs)

Original OLTP workload
Synthetic OLTP workload

Figure 9. Mean resp. time of
OLTP as stripe unit size varies

 0

 5

 10

 15

 20

 10 100 1000

M
ea

n
re

sp
on

se
 ti

m
e

(s
ec

on
ds

)

Prefetch length

Varying stripe unit size for DSS

Original DSS workload
Synthetic DSS workload

Figure 10. Mean response time
of DSS as stripe unit size varies

on performance. In this case, stripe unit size does not affect
performance because the LUs in the simulated disk array
have only two disks; therefore, stripe unit size has no effect
on data layout.

In order to present a more interesting result, we re-ran
the experiment simulating a disk array with four disks per
LU. Figure 9 shows the result. In this case, we see behavior
similar to the OpenMail stripe unit size test. However, in
this case, the performance levels off after the size of the
stripe unit reaches 2KB. This is consistent with the fact that
over 90% of the OLTP workload’s requests are 2KB.

4.2.3 DSS

As with prefetch length, we see in Figure 10 that the mean
response times of the target and synthetic workloads remain
close at all stripe unit sizes.

The observed changes in performance as stripe unit size
changes make sense given our understanding of the RAID
1/0 data layout algorithm. As with the OpenMail workload,
the stripe unit size should be set to minimize seek times.
Each RAID group has four disks. The disk array directs
read requests round-robin between the primary and mirror
disks. When the stripe unit size is less than 128KB, each I/O
is striped across two disks. Suppose an LU contains exactly
four interleaved, synchronized streams. Then each request
will cause two disks to seek. The requests from streams 1
and 3 will go to disks 1 and 2; and the requests from streams
2 and 4 will go to disks 3 and 4. Thus (when prefetching
is set to 0), the read heads will “ping-pong” between the
locations for two streams.

Setting the stripe unit size to 128KB does not eliminate
this problem. Although each I/O is now on only one disk,
the striping algorithm will stripe consecutive requests onto
alternating disks. Thus, each request still must suffer a seek;
however, there is no longer the benefit of having two disks
serving the request concurrently. When the stripe unit size
increases to 256KB, then two adjacent I/Os are striped onto
a single disk. Thus, when there are four streams, it is possi-
ble to require only one seek for every two I/Os.

5. Ongoing and future work

This paper demonstrates how the Distiller can contribute
to the development of a self-configuring storage system that
uses the “compute” approach. However, there are still many
open questions.

Given a storage system, is there a single set of attributes
that can be used to fully analyze any workload? Table 3
shows that the Distiller chose different {operation type, lo-
cation} attributes for the OpenMail and DSS workloads. In
each case, we were able to use the chosen attributes to ex-
plain the workload’s behavior as prefetch length and stripe
unit size changed. However, in order to develop an algo-
rithm to choose an optimal prefetch length or stripe unit
size, we must find a reasonably-sized set of attributes that
provides the necessary input. We hypothesize that we can
generate such a set by distilling many workloads, then tak-
ing the union of all attributes chosen.

Will such a “super-set” of attributes be of manageable
size? Ideally, the union of all attributes chosen by the Dis-
tiller for all workloads will contain all performance-related
information; however, if that union contains hundreds of at-
tributes, its usefulness will be limited. It will be difficult to
generate a synthetic workload with which we can verify its
correctness. Also, developing an algorithm that considers
hundreds of attributes will be quite challenging.

The question of finding one set of attributes per storage
system also applies to the “compare” approach. When com-
paring two workloads using a set of attributes, we must be
sure that the resulting attribute-values contain all the rele-
vant performance-related information for both workloads.
Furthermore, if the comparison uses a lookup table, it must
be small enough to be populated in a reasonable amount of
time. Currently, the attributes chosen by the Distiller are
not scalars; they tend to be distributions (represented by
histograms with several hundred bins) and Markov models
(which include distributions and transition matrices).

The development of autonomic computing algorithms
is just one of several uses of the attributes chosen by the
Distiller. Our high-level goal is to develop a better under-
standing of how workloads and storage systems interact by

studying how the attributes chosen by the Distiller differ
as workloads and storage systems change. We expect that
this knowledge will aid the design of storage system hard-
ware, firmware, configuration policies, and analytic models.
For example, by learning precisely which attributes have the
largest effect on performance, we may learn how to iden-
tify precisely those patterns within a workload that firmware
should be tuned to handle.

Also, we believe that the synthetic workloads used to
evaluate the chosen attributes will help storage systems re-
searchers by providing more evaluation workloads. Cur-
rently, there is a very limited supply of traces of production
workloads. Many system administrators hesitate to make
traces publicly available because they may contain sensitive
data. In contrast, synthetic workloads are specified using
high-level information (i.e., attribute-values) that is much
less sensitive. Consequently, we hope that improving our
ability to easily generate accurate synthetic workloads will
increase the number of workload traces available to those
who study and evaluate storage systems.

Finally, we believe the Distiller’s techniques generalize
to other areas of computer systems design. We plan to in-
vestigate how the Distiller can be used to identify the key
attributes other workloads and possibly use those attributes
a basis for other autonomic systems.

6. Conclusions

We demonstrated that the attributes chosen by the Dis-
tiller are of use to those who design autonomic computing
algorithms. First, we showed that the attributes contain the
information necessary to predict the consequences of modi-
fying a storage system’s prefetch length and stripe unit size.
This information can, in theory, be used to select a rea-
sonable configuration. Second, we briefly explained how
the observed consequences could be explained given the in-
formation in the chosen attributes and an understanding of
the storage system’s configuration and firmware. Although
there is much to be done in developing self-managing stor-
age systems, the Distiller provides an important step.

References

[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: Running circles around storage
administration. In Proceedings of the Conference on File
and Storage Technologies, pages 175–188. IEEE, January
2002.

[2] E. Anderson, R. Swaminathan, A. Veitch, G. A. Alvarez,
and J. Wilkes. Selecting RAID levels for disk arrays. In
Proceedings of the Conference on File and Storage Tech-
nologies, January 2002.

[3] M. Calzarossa and G. Serazzi. Construction and use of mul-
ticlass workload models. Performance Evaluation, 19:341–
352, 1994.

[4] G. R. Ganger. Generating representative synthetic work-
loads: An unsolved problem. In Proceedings of the Com-
puter Measurement Group Conference, pages 1263–1269,
December 1995.

[5] M. E. Gomez and V. Santonja. A new approach in the
analysis and modeling of disk access patterns. In Perfor-
mance Analysis of Systems and Software (ISPASS 2000),
pages 172–177. IEEE, April 2000.

[6] M. E. Gomez and V. Santonja. A new approach in the mod-
eling and generation of synthetic disk workload. In Pro-
ceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunica-
tion Systems, pages 199–206. IEEE, 2000.

[7] B. Hong and T. Madhyastha. The relevance of long-range
dependence in disk traffic and implications for trace synthe-
sis. Technical report, University of California at Santa Cruz,
2002.

[8] B. Hong, T. Madhyastha, and B. Zhang. Cluster-based in-
put/output trace synthesis. Technical report, University of
California at Santa Cruz, 2002.

[9] HP OpenView Integration Lab. HP Open-
View Data Extraction and Reporting.
Hewlett-Packard Company, Available from
http://managementsoftware.hp.com/library/papers/index.asp,
version 1.02 edition, February 1999.

[10] Z. Kurmas, K. Keeton, and K. Mackenzie. Iterative distil-
lation of I/O workloads. In Proceedings of the 11th Inter-
national Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2003.

[11] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3):17–29, March 1994.

[12] A. Veitch and K. Keeton. The Rubicon workload char-
acterization tool. Technical Report HPL-SSP-2003-13,
HP Labs, Storage Systems Department, Available from
http://www.hpl.hp.com/SSP/papers/, March 2003.

[13] M. Wang, A. Ailamaki, and C. Faloutsos. Capturing the
spatio-temporal behavior of real traffic data. In Performance
2002, 2002.

[14] M. Wang, T. M. Madhyastha, N. H. Chan, S. Papadimitriou,
and C. Faloutsos. Data mining meets performance evalua-
tion: Fast algorithms for modeling bursty traffic. In Pro-
ceedings of the 16th International Conference on Data En-
gineering (ICDE02), 2002.

[15] J. Wilkes. The Pantheon storage-system simulator. Tech-
nical Report HPL–SSP–95–14, Storage Systems Program,
Hewlett-Packard Laboratories, Palo Alto, CA, December
1995.

[16] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam,
Y. Zhang, and S. Nagar. Synthesizing representative I/O
workloads for TPC-H. In Proc. of the 10th International
Symposium on High Performance Computer Architecture
(HPCA10), Feb 2004.

