
DLUnit: A Unit Testing Framework for Simulated Digital Logic Circuits

Zachary Kurmas
kurmasz@gvsu.edu

Grand Valley State University
Allendale, MI, USA

ABSTRACT

We present DLUnit, a unit test framework for simulated digital

logic circuits. DLUnitprovides a quick and easy way to verify that

a simulated digital logic circuit works as expected. It is based on

JUnit in order to present a low learning curve to students. This

testing ability benefits both instructors and students. It benefits

instructors by automating the process of verifying the correctness

of student submissions, thereby saving time. It benefits students by

providing an easy (and familiar) way to test their assignments be-

fore submitting them, thereby helping them correct mistakes and

misconceptions in amore timelymanner. Furthermore, DLUnit can

be used to provide students additional testing experience; there-

fore, it can serve as one component of a curriculum-wide empha-

sis on testing. DLUnit currently supports JLS and Logisim; but, is

designed to be readily extended to work with other digital logic

simulators.

CCS CONCEPTS

• Applied computing → Computer-managed instruction.

KEYWORDS

Digital logic, Testing, JUnit, JLS, Logisim

1 INTRODUCTION

We introduce DLUnit an improved unit testing framework for sim-

ulated digital logic circuits. DLUnit replaces JLSCircuitTester

[7]. Both DLUnit and its predecessor provide (1) significant time

savings for instructors when grading student submissions, and (2)

a means for students to verify the correctness of their assignments

before submitting them; however, DLUnit imporves upon JLSCircuitTester

by using a JUnit-based interface that students find much easier

to use, thereby reducing their cognitive load. Our students used

JUnit in both CS 1 and CS 2 up until a recent switch from Java to

Python. In contrast, JLSCircuitTester uses a custom syntax that

most students found confusing and difficult to use. Although we

didn’t conduct a rigorous, formal evaluation, we expect that stu-

dents will benefit from this reduced cognitive load (as compared

to using JLSCircuitTester) because they will be able to redirect

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FIE ’23, October 18-21, 2023, College Station, TX

© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

that time and mental energy elsewhere (whether it be to other top-

ics in this course, other courses, or toward relaxation and better

mental health).

1.1 Context

Automated grading frameworks, such as WebCAT [4] and Marmoset [13],

have proven effective for both (1) helping instructors provide bet-

ter, more timely feedback, and (2) helping students learn how to

better test their code. In addition, support for automated grading

is essential when using techniques like “second-chance” exams [6]

and mastery grading [14] in large sections.1 Over the past several

years, these ideas have been incorporated into many tools includ-

ing zyBooks, Courseara, Gradescope [12], Prairie Learn [9], Codio,

TurningsCraft, and Vocareum. DLUnit can serve as the foundation

for extensions that will allow these tools to determine the correct-

ness of simulated digital logic circuits.

Second, the educational community is increasingly recognizing

that testing is an integral part of any project. We should reinforce

the importance of testing by requiring students to submit tests

and/or a test plan for all computing projects. DLUnit supports this

goal by providing a familiar, reasonably straightforward means for

students to test their digital logic circuits as thoroughly as they

would test their Java code.

Third, many students find testing frustrating and difficult. As

with many skills, there is simply no substitute for practice. There-

fore, we should expose our students to testing as much as is prac-

tical. DLUnit contributes to this “across-the-curriculum” exposure

by providing a time-efficient means for students to gain additional

testing experience.

Finally, our experience suggests that students learn better when

they have a means of easily verifying the correctness of a project

before submitting it. Students often “write off” points deducted

from a project and never go back to learn the misunderstood topic.

In contrast, most students hesitate to submit a project with known

bugs. Therefore, they take the time to fix the bugs, and often learn

the associated material in the process. We first noticed this trend

when we introduced our original circuit testing tool [7]. Later, we

noticed (but did not formally evaluate) similar improvements in

(1) our CS 2 project submissions when we introduced unit testing,

and (2) when we used MUnit to add unit testing to our assembly

language assignments [8]. DLUnitprovides the means for students

to verify the correctness of their simulated digitial logic circuits

before submitting them.

1“Second-chance” exams provide students two attempts at each exam, potentially dou-
bling the exam grading workload. Similarly, students in courses that use mastery grad-
ing revise and resubmit each assignment until they have demonstrated mastery over
the its learning objectives. In most cases, they are also allowed to attempt exam ques-
tions multiple times if necessary.

https://doi.org/10.1145/1122445.1122456


FIE ’23, October 18-21, 2023, College Station, TX Zachary Kurmas

We could certainly achieve similar outcomeswith respect to dig-

ital logic learning objectives by simply requiring students to re-

submit assignments until they pass a suite of instructor-written

tests; however, we believe that the additional experience writing

tests is of particular importance to our students.

The vastmajority of ourComputer Science graduates begin their

careers as software developers. Although computer organization is

an important component of the Computer Science curriculum, our

students’ testing abilities have a much more immediate effect on

their success as they begin their careers. Therefore, it is beneficial

to include testing in as many courses as practical; but, in order to

keep the course’s workload reasonable, it is important that we pro-

vide our students tools like DLUnit to keep the workload resulting

from the additional testing expectations as small as practical.

Our Computer Science curriculum includes only a single hardware-

focused course. This computer organization course covers basic

digital logic, processor design, pipelining, and cache memory. Very

few of our students work with hardware design after completing

this course. Therefore, we have students use “drag-and-drop” sim-

ulators rather than requiring them to spend time and effort learn-

ing a hardware description language (HDL) and related toolswhich

few will ever use again. Likewise, we based DLUnit on JUnit (with

which our students have previous experience) as opposed to basing

our design on (or even using) a professional tool such as a Quartus

or Icarus.

To the best of our knowledge, DLUnit is the only tool that uses

a familiar unit test-based syntax for testing simulated digital logic

circuits. Many digital logic simulators (JLS, LogiSim, TkGate, Digi-

tal [1], etc.) provide a command-line interface that allows users to

initiate the simulation of a circut from the command line or a script.

Instructors can use this feature to construct an ad-hoc testing sys-

tem; but, such setups tend to be difficult for students to understand

and use.

1.2 Contributions

Our primary goal in replacing JLSCircuitTester with DLUnit

was to provide a better user experience for our students (i.e., stu-

dents who are already familiar with JUnit, are taking only one

hardware-related course, and are unlikely to directly design/program

hardware after graduation).

JLSCircuitTester supported only the JLS digital logic simula-

tor. In contrast, DLUnit supports both JLS and the more popular

Logisim [3, 11]. (Although the original Logisim is no longer under

development, several groups have forked the original tool and con-

tinued development. It appears that themost popular of these forks

is Logisim Evolution [2].) Unlike JLSCircuitTester, DLUnit is

designed to be extended to support additional simulators in the fu-

ture. (The fact that DLUnit already supports two simulators means

that the abstraction mechanism has already been used and tested.)

The remainder of this paper provides details of DLUnit and dis-

cusses our experiences using the tool.

2 THE JAVA INTERFACE

Figure 1: Sample circuit for testing

import static <witheld for anonymous review>

// Simple tests to help students get started

public class UAdderTest {

@Test

public void zero_zero_false() {

setPinUnsigned("InputA", 0);

setPinUnsigned("InputB", 0);

setPin("CarryIn", false);

run();

assertEquals("Output", 0, readPinUnsigned("Output"));

assertFalse("Carry Out", readPin("CarryOut"));

}

@Test

public void zero_one_false() {

setPinUnsigned("InputA", 0);

setPinUnsigned("InputB", 1);

setPin("CarryIn", false);

run();

assertEquals("Output", 1, readPinUnsigned("Output"));

assertFalse("Carry Out", readPin("CarryOut"));

}

// Place similar tests here....

}

Figure 2: Simple tests for adder

# (1) Compiling a test file

$$ javac -cp NewTester.jar UAdderTest.java

# (2) Testing a correct circuit

$$ java -jar NewTester.jar UA.jls UAdderTest.class

Version 1.1.0

All tests (4) passed.

# (3) Testing a circuit with bugs

$$ java -jar NewTester.jar UA_bkn.jls UAdderTest.class

Version 1.1.0

Failure: zero_one_true(UAdderTest):

Output expected:<2> but was:<0>

Tests run: 4, Failures: 1

Figure 3: Running DLUnit



DLUnit: A Unit Testing Framework for Simulated Digital Logic Circuits FIE ’23, October 18-21, 2023, College Station, TX

import static <witheld for anonymous review>

// Use helper methods quickly write many tests

public class UAdderTest {

// Helper method to calculate expected outputs

// (Makes it easier to add tests.)

protected void verify(long a, long b,

boolean carryIn) {

long carryInAsInt = (carryIn ? 1 : 0);

long exp = a + b + carryInAsInt;

boolean expectedOverflow = exp > 65535;

setPinUnsigned("InputA", a);

setPinUnsigned("InputB", b);

setPin("CarryIn", carryIn);

run();

// custom message to make it clearer

// which test failed

String message = "of " + a + " + " + b +

" with " + (carryIn ? "a " : " no ") +

" carry in";

// Output "wraps around" if overflow

Assert.assertEquals("Output " + message,

(exp % 65536), readPinUnsigned("Output"));

Assert.assertEquals("CarryOut " + message,

expectedOverflow, readPin("CarryOut"));

}

// With the helper method, we can focus on choosing

// inputs without having to calculate outputs.

@Test

public void overflow1() {

verify(65535, 1, false);

}

@Test

public void overflow2() {

verify(65535, 0, true);

}

// Alternatively, we can automatically generate tests

// from a list of numbers. (Yes, I know this isn't

// the conventional way of generating tests; but,

// it's useful when grading student submissions.)

@Test

public void testMany() {

long testIntegers[] = {0, 1, ..., 65535};

int count = 0;

for (long a : testIntegers) {

for (long b : testIntegers) {

verify(a, b, false);

verify(a, b, true);

count += 2;

}

}

} // end testAll

}

Figure 4: More tests for a half adder

@Test

public void add5() {

setPinUnsigned("Offset", 5);

setRegisterUnsigned("Counter", 3);

int[] vals = {0, 10, 20, 30, 40, 50, 60, 70, 80};

setMemoryUnsigned("Memory", 0, vals);

run();

Assert.assertEquals("Output", 35,

readMemorySigned("Memory", 3));

}

Figure 5: Sample DLUnit test for circuit with registers and

memory

Figure 6: Sample circuit using registers and memory

DLUnit is a Java interface to digital logic simulators (currently

JLS and Logisim). It helps users write JUnit tests for their simu-

lated digital logic circuits. In particular, DLUnit provides methods

that

• configure the initial state of the circuit (i.e., place values in

registers and/or RAM, if applicable),

• provide values for any input pins,

• instruct the chosen simulator to simulate the circuit under

test, and

• query the final state of the circuit (registers, RAM, output

pins, etc.)

Programmers then use JUnit’s Assert methods to verify that the

circuit’s final state meets expectations.

Figure 1 shows an example circuit, a 16-bit adder. Figures 2 and 4

show example test suites. Users run a test suite from the command

line by specifying the name of the file containing the circuit under

test and the name of the class file containing the DLUnit tests (e.g.,

java -jar DLUnit.jar halfAdder.jls HalfAdderTest.class).

The setPin* methods specify the value for each input pin. The

run method in each test starts the simulation of the circuit. The

readPin*methods return the final values on the output pins. These

values are then tested using JUnit’s assert mechanism. Any errors

are reported using JUnit’s built-in error reporting functionality.



FIE ’23, October 18-21, 2023, College Station, TX Zachary Kurmas

Figure 3 shows (1) how to compile the tests, (2) the output from a

passing test, and (3) the output when some test fails.

We test student submissions thoroughly. Typical software test-

ing techniques, such as focusing on the corner cases, won’t find

hardware mistakes like a randommissing or improperly connected

wire. Because DLUnit tests are just Java/JUnit, instructors can eas-

ilywrite exhaustive tests. Our tests don’t always follow typical unit

tests patterns; but, they are effective for finding the types of mis-

takes our students tend to make.

Figure 4 shows part of one such test. The method verify tests

the circuit using the parameters supplied (two integers and aBoolean

representing the carry). It computes the expected output, simulates

the circuit, then verifies that the circuit produced the expected out-

put values.

DLUnit also provides similar methods to view and set registers

and memory. Figure 5 shows a test for a circuit containing registers

and memory (shown in Figure 6).2

2.1 Testing CPUs

In addition to simple combinatorial and sequential circuits, we also

have our students implement the single-cycle datapath used as a

running example in both the Patterson and Hennessy textbook

and the Harris and Harris textbook [5, 10]. At a high level, using

DLUnit to test a CPU entails writing a test class that (1) loads ma-

chine code into the circuit’s memory, (2) simulates the circuit, then

(3) confirms that registers andmemory contain the expected values

afterward. That class, SingleCycleCPUTest, is built into DLUnit.

To further simplify the testing process, this CPU test class takes a

MIPS assembly language file as input, then uses the MARSMIPS sim-

ulator [15] to (1) generate the machine code that is loaded into the

circuit under test, and (2) execute the assembly code to determine

the expected final register and memory values. By using MARS, the

user need only provide the assembly code. She need not generate

the machine code, nor must she determine the expected output (fi-

nal register and memory state) “by hand”.

Figure 7 shows the command for testing a CPU using DLUnit.

This command is longer than we would like; but, the alternatives

are (1) to provide separate jar files for circuit testing and CPU

testing, or (2) provide a separate script to launch the CPU tester.

Our experiences with JLSCircuitTester led us to conclude that

the long command was preferable to expecting students to manage

separate files/programs. (Instructors can still prepare scripts and

shortcuts; students who aren’t comfortable with such techniques

still have the option of falling back on the straightforward, but

long, command.)

We also provide a similar test class for testing the multi-cycle

CPU discussed in the Harris and Harris text (and early editions

of the Patterson and Hennessy text). Rather than having studens

implement the finite-state-machine-based control unit discussed

in the text, we have our students program a simple microcode.

2Note: Logisim does not name its memory elements; therefore, (1) the name of a
memory element is ignored when testing a Logisim circuit, and (2) DLUnit does not
support the testing of Logisim circuits with more than one memory element per
subcircuit (we have not found a good way to distinguish among them).

3 OUR TYPICAL WORKFLOW

Although we do not formally present Test Driven Development

(TDD) in this course, we strongly encourage students to follow a

TDD-like workflow: We provide a few sample tests to help them

learn the DLUnit API, 3 then encourage them to write a complete

set of tests before implementing their circuit. Students submit their

circuit when they are confident they have found and fixed all bugs.

Students who submit buggy circuits are asked to write one ormore

failing tests (i.e., figure out why their test cases failed to detect

their bugs), fix the bugs (i.e., get those failing cases to pass), and

re-submit.

Our motivation for using this TDD-like workflow is to give stu-

dents practice in devising test cases (thinking through all the re-

quirements, corner cases, unusual situations, etc.). When a stu-

dent’s circuit passes all of her test cases, but fails one or more of

the instructor’s tests, that means the student’s set of tests is incom-

plete. This situation provides an opportunity for the student to find

the missing test case(s) and reflect on her process for writing tests,

which will hopefully help her write a better set of tests for the next

assignment.

We use GitHub Classroom4 and GitHub Actions5 to provide im-

mediate feedback to students on the correctness of their circuits.

GitHub Classroom is a service provided by GitHub that crates a

separate git repository for each student/team. These repositories

are initialized with instructions and, in most cases, some “starter

circuits”. (These “starter circuits” usually contain the input and out-

put pins, so students are less likely to have an incorrect interface.

Sometimes the repository also contains lower-level components

that would be unnecessarily tedious to make the students build

themselves – like the CPUs register file.)

These repositories also contain a GitHub Action configuration.

When launched, theGitHubAction downloads the instructor’s tests

and uses DLUnit to run the tests against the circuit. These tests do

not have descriptive names; so, although students can see which

tests failed, they don’t know what that test does. (The tests are

stored on a web server with a “whitelist” that includes only the

IP address of the virtual machines used by GitHub Actions. Thus,

students can not easily access the tests. It is not impossible for the

students to access the tests; but, the changes to the repo that would

allow access should be detectable.)

Notice that the TDD-like workflow we use is optional. Instruc-

tors can simply provide a complete set of tests for students to use,

then use a GitHub Action to verify that the submitted circuits pass

the tests.

4 OUR EXPERIENCE

We began using DLUnit in our Computer Organization course sev-

eral semesters ago. Our issues with JLSCircuitTester disappeared

almost immediately. Only one or two students per semester have

trouble setting up the tool; and, only a few students have trouble

understanding its output. We still have several students a year ask

for help writing tests. In contrast, when using JLSCircuitTester,

well over half of the students would request help writing tests.

3https://kurmasgvsu.github.io/Software/DLUnit/dist/doc/index.html
4https://classroom.github.com
5https://github.com/features/actions

https://kurmasgvsu.github.io/Software/DLUnit/dist/doc/index.html


DLUnit: A Unit Testing Framework for Simulated Digital Logic Circuits FIE ’23, October 18-21, 2023, College Station, TX

java -jar DLUnit.jarmyCPU.jls builtin.SingleCycleCPUTest –param test1.a

Figure 7: command for testing a CPU using DLUnit

When using DLUnit, we are able to verify the correctness of the

entire class’s submitted circuits in a matter of minutes. We choose

to review the students’ circuits and comment on their design be-

fore assigning grades; but, in theory, instructors could use DLUnit

to completely automate the grading. We use GitHub Classroom

and GitHubActions to completely automate the correctness check-

ing of assignments: When students push changes to their main git

branch, GitHub automatically runs DLUnit and reports any failures

to the student. When GitHub reports a passing build, instructors

then review circuits by hand in order to comment on the overall

design.

Relatively few students need to submit an assignment more than

once. During Fall 2019, we assigned three major projects. These

projects were completed by 30 teams of two. Of the 90 submitted

projects, 60% passed our tests after the initial submission. Another

27% passed after the second submission. 11% of submissions re-

quired 3 attempts; and 2% required 4. No team required more than

four submissions to find and fix all bugs.

Needless to say, students did not always enjoy writing tests; but,

survey results indicated that most recognized the value of the pro-

cess. Students used a 5-point Likert scale to indicate their agree-

ment with the following two statements:

• Using DLUnit improved my confidence in the correctness of

my assembly code.

• Writing unit tests in this class was “busy work” that had little

value.

As shown in Table 1: 61% of the 41 students agreed (responded

with a 4 or 5) that using DLUnit improved their confidence in the

correctness of their code. 41% of students disagreed that writing

unit tests was “busy work”. (25% agreed; and an additional 34% re-

sponded with a “neutral” 3.) The percentage of students explicitly

disagreeing that writing unit tests is busy work was smaller than

we expected, but not out of line with the “word on the street”: We

know from informal discussions with students in our program (not

just in this course) that most don’t enjoy writing tests. One student

said “It’s kind of busy work, but works well for our testing.” We sus-

pect that many students have a similar attitude.

The free-response section of the evaluation asked students “What

suggestions do you have for improving DLUnit, and/or improving the

way it is used in this course?”

The majority of responses fell into one of three categories:

Six students offered complements. For example:

• DLUnit was super useful for validating my circuit solutions.

After reading example test cases I built fairly thorough tests.

Once I caught an error it let me find/fix my own problems.

• I thought it was great and had no issues

Three were not happy that DLUnit is a command-line tool:

• It certainly works, but I would rather have a simpler way of

executing tests (not a fan of command line) ...

Four requested more directions on how and what to test:

• I feel that in some labs, more tests should have been provided

to the student.

• I felt that writing the JUnit tests was pointless when we didn’t

get specifications on cases to test ...

• More suggestions on how onewrites effective tests? It was some-

times hard for me to think of tests ...

• We need clearer instructions for writing the test. Some people

have little experience writing unit tests.

We find the last set of comments somewhat disheartening be-

cause we have recently increased our focus on testing in our pre-

requisite CS 1 and CS 2 courses (partially in response to [7] and [?

]). However, the difficulty students have designing a complete set

of tests does reinforce our position that testing should be discussed

and required in as many computing courses as practical.

We did not quantitatively compare DLUnit and JLSCircuitTester.

Because it is based on JUnit, which is used in our CS 1 and CS 2

courses, DLUnit is clearly a better fit for our curriculum. In addi-

tion, our observations strongly suggest that our students are hap-

pier (and less confused) when using DLUnit. At this point, collect-

ing quantitative data would require us to withhold DLUnit from

a cohort of students, which we strongly suspect would not be in

their best interest.

5 FUTURE WORK

Pedagogy: DLUnit helps instructors reinforce software testing in

a course that does not traditionally contain a formal testing compo-

nent. The effects of adding a testing component to a single course

(e.g., Computer Organization) is probably small; but, is an impor-

tant component of a more comprehensive “testing across the cur-

riculum” approach that adds testing components to as many com-

puting courses as practical. A comprehensive study of the effects

of testing across the curriculum is beyond the scope of this Inno-

vative Practice Report; but, we look forward to such a study in the

future.

Tool Improvements: Currently, DLUnit only assesses a cir-

cuit’s final state. For combinatorial circuits, this is when there are

no further gate changes. For sequential circuits, DLUnit relies on

a “halt” signal.6 We are considering adding an option that would

allow users to check a sequential circuit’s state after every clock

tick.

Additional CPUs:Over the past several years, publishers have

shifted away from MIPS and toward RISC-V and ARM. Upon find-

ing a MARS-like tool for either RISC-V or ARM, we plan to build

similar CPU-testing classes for them.

6 AVAILABILITY

The software, as well as full documentation and additional sample

tests, is available at

http://www.blind.review

6JLS includes a “halt” gadget that can be activated. Sequential circuits in Logisim

must have an output pin named “halt” that the circuit asserts when the simulation
should terminate.

http://www.blind.review


FIE ’23, October 18-21, 2023, College Station, TX Zachary Kurmas

Strongly Strongly

Question Disagree Disagree Neutral Agree Agree

Using DLUnit improved my confidence in

the correctness of my assembly code.

1 2 2 13 23

Writing unit tests in this class was “busy

work” that had little value.

5 12 14 7 3

Table 1: Responses to Likert questions

ACKNOWLEDGMENTS

Witheld for blind review.

REFERENCES
[1] [n.d.]. Digital. https://github.com/hneemann/Digital.
[2] [n.d.]. Logisim-evolution.
[3] Carl Burch. 2002. Logisim: A Graphical System for Logic Circuit De-

sign and Simulation. J. Educ. Resour. Comput. 2, 1 (March 2002), 5–16.
https://doi.org/10.1145/545197.545199

[4] Stephen H. Edwards. 2004. Using Software Testing to Move Students from Trial-
and-Error to Reflection-in-Action. In SIGCSE ’04: Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education.

[5] Sarah L. Harris and David Money Harris. 2015. Digital Design and Computer
Architecture, ARM Edition. Morgan Kaufmann.

[6] Geoffrey L. Herman, Zhouxiang Cai, Timothy Bretl, Craig Zilles, and Matthew
West. 2020. Comparison of Grade Replacement and Weighted Averages for
Second-Chance Exams. In Proceedings of the 2020 ACM Conference on Inter-
national Computing Education Research (Virtual Event, New Zealand) (ICER
’20). Association for Computing Machinery, New York, NY, USA, 56–66.
https://doi.org/10.1145/3372782.3406260

[7] Zachary Kurmas. 2008. Improving student performance using auto-
mated testing of simulated digital logic circuits. In ITiCSE ’08: Proceed-
ings of the 13th annual conference on Innovation and technology in com-
puter science education (Madrid, Spain). ACM, New York, NY, USA, 265–270.
https://doi.org/10.1145/1384271.1384342

[8] Zachary Kurmas. 2017. MIPSUnit: A Unit Testing Framework for
MIPS Assembly. In Proceedings of the 2017 ACM SIGCSE Technical Sym-
posium on Computer Science Education (Seattle, Washington, USA) (SIGCSE
’17). Association for Computing Machinery, New York, NY, USA, 351–355.
https://doi.org/10.1145/3017680.3017747

[9] Geoffrey L. Herman Matthew West and Craig Zilles. [n.d.].

[10] David A. Patterson and John L. Hennessy. 2013. Computer Organization and
Design: The Hardware/Software Interface, Fifth Edition. Morgan Kaufmann.

[11] David A. Poplawski. 2007. A pedagogically targeted logic design
and simulation tool. In WCAE ’07: Proceedings of the 2007 workshop
on Computer architecture education (San Diego, California). ACM, 1–7.
https://doi.org/10.1145/1275633.1275635

[12] Arjun Singh, Sergey Karayev, Kevin Gutowski, and Pieter Abbeel. 2017. Grade-
scope: A Fast, Flexible, and Fair System for Scalable Assessment of Handwritten
Work (L@S ’17). Association for Computing Machinery, New York, NY, USA,
81–88. https://doi.org/10.1145/3051457.3051466

[13] Jaime Spacco and William Pugh. 2006. Helping Students Appreciate Test-
driven Development (TDD). In Companion to the 21st ACM SIGPLAN Sym-
posium on Object-oriented Programming Systems, Languages, and Applications
(Portland, Oregon, USA) (OOPSLA ’06). ACM, New York, NY, USA, 907–913.
https://doi.org/10.1145/1176617.1176743

[14] Ellen Spertus and Zachary Kurmas. 2021. Mastery-Based Learning in Un-
dergraduate Computer Architecture. In ACM/IEEE Workshop on Computer Ar-
chitecture Education, WCAE 2021, Raleigh, NC, USA, June 17, 2021. IEEE, 1–7.
https://doi.org/10.1109/WCAE53984.2021.9707147

[15] Kenneth Vollmar and Pete Sanderson. 2006. MARS: An Education-Oriented
MIPS Assembly Language Simulator. In SIGCSE ’06: Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Education (Houston, Texas,
USA). ACM, 239–243. https://doi.org/10.1145/1121341.1121415

https://doi.org/10.1145/545197.545199
https://doi.org/10.1145/3372782.3406260
https://doi.org/10.1145/1384271.1384342
https://doi.org/10.1145/3017680.3017747
https://doi.org/10.1145/1275633.1275635
https://doi.org/10.1145/3051457.3051466
https://doi.org/10.1145/1176617.1176743
https://doi.org/10.1109/WCAE53984.2021.9707147
https://doi.org/10.1145/1121341.1121415

	Abstract
	1 Introduction
	1.1 Context
	1.2 Contributions

	2 The Java Interface
	2.1 Testing CPUs

	3 Our Typical Workflow
	4 Our Experience
	5 Future Work
	6 Availability
	Acknowledgments
	References

