Name:

Single Cycle Implementation Homework

Only problems 1 through 5 are due for credit.

1. Disassemble the following machine instructions:

(a) 0x016a6020

(b) 0x014b6824

(c) 0x35134321

(d) 0x20000000

(e) 0x000a5140

2. The figure below represents a 32-bit instruction output from the Instruction Memory in Figure 1.

(f) Oxilicffffa

(g) 0x8e0b000c

(h) 0x8edefff8

(i) 0xae2d0010

(j) 0x08100000

For each bit in the figure below, identify which label (B, C, D, and/or E) will get a copy of
that bit. (Some bits will be sent to more than one label.) The bits sent to point B are already

completed.

B4

B,

B,

|31 |30 |29 IZE I27 |26 |25 |24 |23 |22 |21 IZD |19 IlE |17 llE |15 |14 |13 IlZ lll |10 |9

le 17 e 1s 14 1g 1, 14

lo

Name:

3. For each instruction below, determine the value at each of the labeled points in Figure 1. Assume
that register x has the value 1000 *x x + 10 x x. For example, assume $0 is 0, $1 is 1010, $2 is
2020, $31 is 31310, etc. In addition: Assume the current instruction is at address 0x0040001C,
label fwd6 is 0x00400034, and bwd6 is 0x00400004. Represent the contents of memory location
x as M[x]. Some values (e.g., the output of the ALU when doing a jump) are undefined. List all
well-defined values — even if that value isn’t used by the instruction.

Point | add $12, $3, $2 | addi $3, $2, 131 | addi $3, $2, -16 | 1w $5, O0x5ABC($24)

0x0040 0020

3

2

12

24608 --- 0x6020

0x00006020

12

2020 —--- OxT7E4

3030

3030

5050 --- 0x13BA

5050 --- 0x13BA

0

0x004180a0

Point | sw $4, -8($2) | beq $3, $2, fwd6 | beq $3, $3, bwd6 | j fwd6

ZI 2 2| R |~ = Q| | O Q| | =

2 -7 — OxFFF9

ZIZ|C| R = = T Q| E| O Q|

0x00400000

Name:

. Suppose the branch control wire is set to 1 whenever the op code is 2 (for j). Will the CPU
operate correctly? If so, explain why. If not, give an example instruction that will not operate
correctly.

. Suppose your CPU has a hardware bug and places 1 on the regWrite control wire for sw. Describe

10.
11.
12.
13.
14.
15.
16.
17.
18.

the effects of this bug when running when running sw $t5, -4($al).

. What is the purpose of the ALU labeled “A” in Figure 27
. Why does the input to the ALU labeled “A” in Figure 2 have the constant value 47
. What is the purpose of the “shift-left 2”7 labeled “B” in Figure 27

. Why are jump targets encoded as a word address instead of a byte address?

What is the purpose of the sign extender in Figure 27 Why is it necessary?
What is the purpose of the mux labeled “C” in Figure 27

What is the purpose of the “shift-left 2”7 labeled “D”’ in Figure 27

What is the purpose of the mux labeled “F” in Figure 27

What is the purpose of the and gate labeled “G” in Figure 27

What is the collective purpose of the muxes labeled “H” and “I” in Figure 27
Does it matter whether mux “H” comes first or mux “I”7

What is the purpose of the mux labeled “J” in Figure 27

Add components to Figure 2 to show how to add a “branch if not equal” instruction to the

single-cycle CPU.

Name:

Instruction [25-0] Shift Jump address [31-0]
left 2
" 26 28 | pC 4 4[31-28] 0 Lo
l—» M M
Add u u
X X
4 — 1 0
Instruction [31-26]
-
Read Instruction [25—-21] 4 Read
ea ;
| PC [&» address C : register 1 Reaq |
Instruction [20—16] \ Read data 1
Instruction register 2
>4 0
[31-0] M Write Read -+-(0 ALUreAsLuLI{ | Address Rde’i(’jl maf
Instruction | ||nstruction [15-11]| % [Aregister data 2 M o M
memory | e—0F—»{) u X
1 write | 1" J 0
data Registers
G <F
Instruction [15-0] 16 Sign- 32
extend i
E 4 L—
Instruction [5-0] K

Figure 1: Single Cycle CPU with labeled points (black & white)

Instruction [25-0] Shift Jump address [31-0]
left 2
26 28 | pG 443128
Add
—1 D
. B AN Adg ALU
" result
RegDst
Jump
Branch
A MemRead
Instruction [31-26] MemtoReg
Control 715
ALUSrc
RegWrite d,
Instruction [25-21] R
PG |»] Read re%?gen
address Read
Instruction [20-16] Read datat
Instruction register 2
1ol M| wite ~ Read Address R;agg
Instruction [||instruction [15-11]| % [7] register data2
memory 1
X\lme
ata Registers . Data
C/ mrll;e memory|
Instruction [15-0] 16 [sign-\| 32
extend i

Instruction [5-0]

FIGURE4.24 The simple control and datapath are extended lo handle the jump instr . An additic ultiplexc
(ar the upper right) is used to choose between the jump rtarget and erther the branch target or the al istruction following this one. This
multiplexor is controlled by the jump control s@nal The jump target address £s oblained by shifiing the lower 26 bits of the jump instruction
Jefi 2 bits, efiectively alding 00 as the low-order bits, and then concatenating the upper 4 bits of PC+ 4 as the high-order bits, thus yielding a
A2-bit address. Copyright © 2009 Elsevier; Inc. Allrights resarved,

Figure 2: Single Cycle CPU with labeled parts (black & white)

