
Name:

Single Cycle Implementation Homework

Only problems 1 and 2 are due for credit.

1. Disassemble the following machine instructions:

(a) 0x016a6020

(b) 0x014b6824

(c) 0x35134321

(d) 0x20000000

(e) 0x000a5140

(f) 0x11cffffa

(g) 0x8e0b000c

(h) 0x8e4efff8

(i) 0xae2d0010

(j) 0x08100000

1

Name:

2. For each instruction below, determine the value at each of the labeled points in Figure 1. Assume
that register x has the value 1000 ∗ x + 10 ∗ x. For example, assume $0 is 0, $1 is 1010, $2 is
2020, $31 is 31310, etc. In addition: Assume the current instruction is at address 0x0040001C,
label fwd6 is 0x00400034, and bwd6 is 0x00400004. Represent the contents of memory location
x as M[x]. Some values (e.g., the output of the ALU when doing a jump) are undefined. List all
well-defined values — even if that value isn’t used by the instruction.

Point add $12, $3, $2 addi $3, $2, 131 addi $3, $2, -16 lw $5, 0x5ABC($24)

A 0x0040 0020

B 3

C 2

D 12

E 12

F 24608 --- 0x6020

G 2020 --- 0x7E4

H 0x00006020

I 3030 --- 0xBD6

J 2020 --- 7E4

K 5050 --- 0x13BA

L 0

M 5050 --- 0x13BA

Point sw $4, -8($2) beq $3, $2, fwd6 beq $3, $3, bwd6 j fwd6

A
B
C
D
E
F
G
H
I
J
K
L
M

2

Name:

3. What is the purpose of the ALU labeled “A” in Figure 2?

4. Why does the input to the ALU labeled “A” in Figure 2 have the constant value 4?

5. What is the purpose of the “shift-left 2” labeled “B” in Figure 2?

6. Why are jump targets encoded as a word address instead of a byte address?

7. What is the purpose of the sign extender in Figure 2? Why is it necessary?

8. What is the purpose of the mux labeled “C” in Figure 2?

9. What is the purpose of the “shift-left 2” labeled “D”’ in Figure 2?

10. What is the purpose of the mux labeled “F” in Figure 2?

11. What is the purpose of the and gate labeled “G” in Figure 2?

12. What is the collective purpose of the muxes labeled “H” and “I” in Figure 2?

13. Does it matter whether mux “H” comes first or mux “I”?

14. What is the purpose of the mux labeled “J” in Figure 2?

15. Add components to Figure 2 to show how to add a “branch if not equal” instruction to the
single-cycle CPU.

Version: 2013:vgh66

3

Name:

A

B

C

D E

F

G

H

I

J

K

L

M

Figure 1: Single Cycle CPU with labeled points

4

Name:

A

B

C

D

F

G

H I

J

E

Figure 2: Single Cycle CPU with labeled parts

5

Name:

Figure 3: Single Cycle CPU with labeled points (black & white)

6

Name:

Figure 4: Single Cycle CPU with labeled parts (black & white)

7

