Name:

Single Cycle Implementation Homework

Only problems 1 and 2 are due for credit.

1. Disassemble the following machine instructions:

(a) 0x016a6020
(b) 0x014b6824
(c) 0x35134321
(d) 0x20000000
(e) 0x000a5140
(f) Ox1licffffa
(g) 0x8e0b000C
(h) 0x8edefff8
(i) 0xae2d0010

(j) 0x08100000



Name:

2. For each instruction below, determine the value at each of the labeled points in Figure 1. Assume
that register x has the value 1000 *x x + 10 x x. For example, assume $0 is 0, $1 is 1010, $2 is
2020, $31 is 31310, etc. In addition: Assume the current instruction is at address 0x0040001C,
label fwd6 is 0x00400034, and bwd6 is 0x00400004. Represent the contents of memory location
x as M[x]. Some values (e.g., the output of the ALU when doing a jump) are undefined. List all
well-defined values — even if that value isn’t used by the instruction.

Point | add $12, $3, $2 | addi $3, $2, 131 | addi $3, $2, -16 | 1w $5, 0x5ABC($24)

A 0x0040 0020

B 3

c |2

D 12

E 12

F 24608 --- 0x6020
G 2020 --- OxT7E4
H 0x00006020

I 3030 --- 0xBD6
J 2020 --- 7E4

K 5050 --- 0x13BA
L 0

M 5050 --- 0x13BA

Point | sw $4, -8($2) | beq $3, $2, fwd6 | beq $3, $3, bwd6 | j fwd6

il EE el ol il wlie) el =




10.
11.
12.
13.
14.
15.

Name:

. What is the purpose of the ALU labeled “A” in Figure 27

. Why does the input to the ALU labeled “A” in Figure 2 have the constant value 47
. What is the purpose of the “shift-left 2” labeled “B” in Figure 27

. Why are jump targets encoded as a word address instead of a byte address?

. What is the purpose of the sign extender in Figure 2?7 Why is it necessary?

. What is the purpose of the mux labeled “C” in Figure 27

. What is the purpose of the “shift-left 2”7 labeled “D”’ in Figure 27

What is the purpose of the mux labeled “F” in Figure 27

What is the purpose of the and gate labeled “G” in Figure 27

What is the collective purpose of the muxes labeled “H” and “I” in Figure 27
Does it matter whether mux “H” comes first or mux “I”7

What is the purpose of the mux labeled “J” in Figure 27

Add components to Figure 2 to show how to add a “branch if not equal” instruction to the

single-cycle CPU.

Version: 2013:vgh66



Name:

Instruction [25-0] @ Jump address [31-0]

left 2
%6 28 | pC 4 4[31-28]

Read
*"| address

Instruction
[31-0]

Instruction
memory

Instruction [31-26]
—

Instruction [25-21] 4

F#

Read
C register 1 Rgaq
Instruction [20—16]\ Read datal i
L (')VI register 2 .
Write ea i
Instruction [15-11]| ¥ [A register data 2
U J wite
data Registers
Instruction [15-0] 16 [sign-| 32
extend

Instruction [5-0]

0
M M
u u
X X
ALU
Add og it ! 0
@ L
ALU ALY Read
n %II result] 1] Address  gata 1M
u X
X
1 J Q
Write Data
<H data memory

P mv—s
K

FIGURE4.24 The simple control and datapatf are exte nded fo handle the jump instr
(at the upperright) is used to choose between the jump target and erther the branch target or the sequential instruction following this one. This
multiplexor 1s controlled by the jump control sggnal. The jump target address is obtained by shifiing the lower 26 bits of the jump instruction
left 2 bits, effectively adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC+ 4 as the lugh-order bits, thus yelding a
F2-bit address Copyright © 2000 Hsevier; lnc. Allrights reserved.

An additic ; Itinlexor

Figure 1: Single Cycle CPU with labeled points



Name:

Instruction [25-0] Shift Jump address [31-0]
. left 2
26 28 | pC .4 4[31-28] o L
L—‘ M M
Add u u
B 4 D E/' X X
4 — \ 1 0
A Instruction [31-26]
s
Instruction [25-21] Read
.| Read register 1
address _ Read __
Instruction [20—16] Read data 1
Instruction register 2
[31-0] [*1 L. Ul 1 Read ALU pLy Read| ]
. Write | result [T Address data [
Instruction | || |nsiruction [15-11] g register data?2 M
memory | e » : u
| Write 0
/ data Registers Wiite Data
C data Mmemory
Instruction [15-0] 16 [sign-| 32
extend i
Instruction [5-0]
FIGURE4.24 The simple control and dalapath are extended to handle the jump inst ion. An additional multiple

(at the upperright) is used to choose between the jump target and erther the branch target or the sequential instruction following this one. This
multiplexor is controlled by the jump control sggnal. The jump target address is obtained by shifiing the lower 26 bits of the jump instruction
left 2 bits, effectively adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC+ 4 as the lugh-order bits, thus yelding a
F2-bit address Copyright © 2000 Hsevier; lnc. Allrights reserved.

Figure 2: Single Cycle CPU with labeled parts



Name:

Instruction [25-0] m Jump address [31-0] [
- \left 2
26 28 | pG 4 4[31-28] 0 1
M M
A Add l).(l g
4 Add ALY 1 0
<L
Instruction [31-26] MemtoReg
Control a0
MemWrite
ALUSrc T
RegWrite
B —\ g
Instruction [25-21] Ry
pC |6»| Read reeg?gem
address g - Read
Instruction [20-16] \ Reag datal
Instrugtion 7 | register2
[31.—0] M| | write Read Address Rdeeﬁg
Instruction | |linstruction [15-11]| % [Rregister data 2
memory { .
A o x\lrlte
ata Regist
hd write Data
D—E - data Memory
Instruction [15-0] 16 @ 32
extend
F —* U T M —>
Instruction [5-0] K

FIGURE4.24 The simple comtro/ and daiapath are extended fo handle the jump instruction. An additional multiplexor
(ar the upperright) is used to choose between the jump target and either the branch target or the sequential instruction following this one. This
multgplexor is controlled by the jump control sgnal. The jump target address is oblained by shilling the lower 26 bits of the jump astruction
Jeft 2 bits, effectively alding 00 as the Jow-order birs, and then concatenating the upper 4 birs of PC+ 4 as the figh-order bits, thus yielding a
F2-bit address Copyright © 2009 Elsevier; lne. Allrights reserved.

Figure 3: Single Cycle CPU with labeled points (black & white)



Name:

Instruction [25-0] m Jump address [31-0] [
- \left 2
26 28 | pG 4 4[31-28] 0 1
Add G i M
B— P | X X
4 R result * 1 Y
A H I
Instruction [31-26]
ALUSrc
RegWrite J
Instruction [25-21] Read
Read "
PC o> address ] register 1 Reaq
Instruction [20—16] Read data 1
Instrugtion 7 | register2
[31.—0] M| | write Read Address Rdeeﬁg
Instruction | |linstruction [15-11]| % [ register data 2
memory { .
o g\lrilte
ala Registers 4o Data
C/ \é\gt';e memory
Instruction [15-0] 16 @ 32
Instruction [5-0]

FIGURE4.24 The simple comtro/ and daiapath are extended fo handle the jump instruction. An additional multiplexor
(ar the upperright) is used to choose between the jump target and either the branch target or the sequential instruction following this one. This
multgplexor is controlled by the jump control sgnal. The jump target address is oblained by shilling the lower 26 bits of the jump astruction
Jeft 2 bits, effectively alding 00 as the Jow-order birs, and then concatenating the upper 4 birs of PC+ 4 as the figh-order bits, thus yielding a
F2-bit address Copyright © 2009 Elsevier; lne. Allrights reserved.

Figure 4: Single Cycle CPU with labeled parts (black & white)



