
CIS 658 – Building a Bug Tracking App
Winter 2019

Homework #4

Due:​ 6pm, February 7, 2018

Note: Work in pairs on this assignment.

Part 1: Bug Overflow – Modeling Bugs

In this first part of the assignment you will create a simple web application using the
Rails framework. In particular, we will be working on a sequence of homework
assignments that will iteratively build a bug tracking application we will call Bug
Overflow. Use a recent version of Rails (5.x) and Ruby.

Iteration #1
In this first iteration, use what you have learned in class to create a single model called
“bug” that models the bugs in our application. Later we will add additional models to the
app. Bugs are represented with this information:

● title: a short descriptive title summarizing the problem.
● description: a longer piece of text which describes the details of the problem.
● issue_type: has three possible values: issue, enhancement, feature.
● priority: priority of the issue with three possible levels: low, medium, high.
● status: the current status of the bug with three possible settings: open, closed,

monitor.

Use rails scaffolding to generate the basic screens for managing bugs (list of all bugs,
show bug, edit bug, and delete bug).

Using the TDD approach outlined in lecture, write the automated tests and then
implement the following model requirements:

1. Title and description cannot be blank whenever a bug is created or edited.
2. Issue_type, priority and status must have valid values (you should represent these

values as enumerated types.)
3. The default value of issue_type should be feature.
4. The default value of priority should be medium.
5. The default value of status should be open.

Do NOT pay any attention to styling at all in this point (e.g. you need not modify the
generated CSS/SCCS files.) Your final product should look like the screenshots inserted
below.

Figure 1. Bug listing view

Figure 2. New bug view.

Figure 3. Bug show view.

Part 2: Bug Overflow – Associating Users With Bugs

In this part of the assignment you will extend the Bug Overflow application that you
started in the previous section by adding a User model to the app and associating users
and bugs.

Iteration #2
Users typically report bugs, so we need to have a model for users. In this iteration of the
application, go ahead and add an additional model for users. For each user you should
have the following fields:

● lname: user’s last name.
● fname: user’s first name.
● email: user’s email address.
● thumbnail: a reference to the user’s thumbnail image.

Use rails scaffolding to rapidly generate the model and basic screens for managing
authors. (list of all authors, show author, edit author, and delete author).

Using the TDD approach outlined in lecture, write the automated tests and then
implement the following model requirements:

1. lname, fname, email cannot be blank whenever an author is created or edited.

2. email must be unique and be a valid format for an email address.
3. thumbnail must end with either .png, .jpg, or .gif. It is ok to leave the thumbnail

field blank.

Formally model the association between users and bugs so that every bug is owned by a
single user, and a single user may own many bugs. In addition, make sure you modify
the appropriate bug views so that a user can be specified when a bug is entered/updated,
or shown in the bug listing or bug detail views. Make sure that you present users as
“Firstname Lastname” when they are shown in views.

Do NOT pay any attention to styling at all in this point (e.g. you need not modify the
generated CSS/SCCS files.) Your final product should look like the screenshots inserted
below. Your user views (not shown below) should also be fully functional.

Deliverables​:
Provide the instructor a demo of your working app in class on February 22, and post your
github link to Slack in a direct conversation. Be sure to add your partner to the
conversation so I know who to give credit to!

Note: In lieu of a live demo in class, you can simply post a link to a deployed copy of
your app on Heroku in the Slack direct conversation. You still need to post your github
URL as well.

Figure 4. Bug listing view with reporting user included.

Figure 5. New bug view with ability to associate user.

Figure 6. Show bug view with user info showing.

