
The JavaScript code for the examples below is in GitHub: https://github.com/kurmasz/CIS658_JavaScript

A Rails app can return data in formats other than HTML.

1. In your blog app, open authors_controller.rb and re-write the index method as follows:

def index
 @authors = Author.all
 respond_to do |format|
 format.html {render :index}
 format.json {render :index, status: :ok}
 format.xml {render xml: @authors.as_json}
 end
end

2. Visit this route and add .xml to the end of the URL (e.g., http://myBlog.com/authors.xml).

Notice that the server returns the list of authors as an XML document. The XML tags are a bit awkward
(e.g., "objects" and "object"); but, you could fix this by overriding the to_xml method for Authors.

3. Visit this route and add .json to the end of the URL (e.g., http://myBlog.com/authors.json)

This time the server returns the list of authors as a JSON object. JSON serves a similar purpose to XML;
but, is simplier. (See https://www.w3schools.com/js/js_json_xml.asp for a comparison.)

Web clients can use JavaSript to access this data and update the page without having to do a refresh.

Note: By default web browsers do not allow cross-origin Javascript: AJAX calls must be made to the same
server the web page came from. Thus to run this example you must either:

Put the sample code on the same server as your Rails app
Use Safari and go do "Developer => Disable Cross-Origin Restrictions
Launch Chrome with cross-origin disabled: https://stackoverflow.com/questions/3102819/disable-same-

API and AJAX

API

Ajax

https://github.com/kurmasz/CIS658_JavaScript
https://www.w3schools.com/js/js_json_xml.asp
https://stackoverflow.com/questions/3102819/disable-same-origin-policy-in-chrome

origin-policy-in-chrome (Be sure to exit all chrome processes first.)

1. Load loadAuthors.html and press the button.

This .html file is simply an empty list followed by a button. When the button is pressed, the JavaScript
makes an AJAX call to the API and retreives the list of authors as XML.

2. Open loadAuthorsXML.js and notice the (function() } construct at the beginning.

It is bad form to pollute the global name space. In order to keep our methods out of the global name
space, we place them inside an anonymous function. The })() construct at the end of the file calls this
anonymous function as soon as it is defined

3. Examine the code from the bottom up (beginning with the document.addEventListener block).

This block adds a listener to the DOM that is called whenever the state of the DOM changes. The
document has three states: loading , interactive and complete . When the document
indicates it is in the interactive state, we know the DOM is complete and it is safe to search it for
elements. (Calls to getElement... methods executed while the document is still in the loading

state may miss elements that have not yet been constructed and added to the DOM. If you ever have
problems with DOM elements not being found, double-check that you aren't searching the document
before the DOM is complete.)

Documents in the interactive state, but not yet complete have a complete DOM; but, may still be
loading / processing resources such as stylesheets and images. See https://developer.mozilla.org/en-
US/docs/Web/API/Document/readyState for details.

4. Examine the loadAuthors method.

This method makes a "raw" AJAX call. Most developers use jQuery or some other library that wraps this
raw call. These libraries typically (a) automatically check readystate and (b) provide better
scaffolding for adding error handlers.

Notice that the send method is asynchronous: It returns immediately. When the response comes back
from the server, the onreadystatechange method is called. (Yes, there are ways to make
synchronous AJAX calls; but, it is not good practice.) See https://developer.mozilla.org/en-
US/docs/Web/API/XMLHttpRequest/readyState for a description of the various ready states.

5. Intentionally misspell "authors" and notice the console messages.

Misspelling "authors" generates a 404 result. Notice that onerror is not called in this case (because
the server returned a usable result -- just not the result we hoped for).

https://stackoverflow.com/questions/3102819/disable-same-origin-policy-in-chrome
https://developer.mozilla.org/en-US/docs/Web/API/Document/readyState
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/readyState

6. Intentionally misspell the domain name and notice this console messages.

In this case, onerror is called. Notice that onreadystatechange is also called. (This is why it is
important to check the returned status!)

7. Examine the data returned by the AJAX call. Specifically, look at the console output generated by these
two lines:

console.log("Complete AJAX object:");
console.log(ajax);

AJAX stands for "Asynchronous Javascript and XML". It is designed with XML in mind and, therefore,
provides some shortcuts when using XML. Look specifically at ajax.responseXML in the Developer
Tools Console. Notice that it looks similar to the web page's main document . JavaScript automatically
parses the returned XML and builds a DOM for it.

8. Examine xmlToAuthors

This method uses the standard DOM methods to extract data from the XML and build an array containg
data for each author.

9. Examine insertAuthors

This method creates an element with the author information and inserts it into the DOM. Note the
use of createElement and createTextNode .

XSL stands for EXtensible Stylesheet Language. Think of it as "CSS for XML).

XSLT stands for XSL Transformations
Uses XSL to transform one XML document into another
https://www.w3schools.com/xml/xsl_languages.asp

This sample XSLT document transforms the XML produced by Rails into XML that looks a lot like HTML:

XSL / XSLT

https://www.w3schools.com/xml/xsl_languages.asp

 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <ul id='rootOfList'>
 <xsl:for-each select="objects/object">

 <xsl:value-of select="lname"/>,
 <xsl:value-of select="fname"/>
 Email: <xsl:value-of select="email"/>

 </xsl:foreach>

 </xsl:template>

1. Place this document in your blog app's assets folder. Call it author.xsl

2. Rewrite AuthorsController#index

def index
 @authors = Author.all

 # Apply XSLT
 document = Nokogiri::XML(@authors.as_json.to_xml)
 template = Nokogiri::XSLT(File.read('app/assets/author.xsl'));
 transformed_document = template.transform(document)

 # dumps the transformed document to the console so you can see the effects
 puts "---\nBefore"
 puts document
 puts "---\nAfter"
 puts transformed_document

 respond_to do |format|
 format.html {render :index}
 format.json {render :index, status: :ok}
 # format.xml {render xml: @authors.as_json}
 format.xml {render xml: transformed_document}
 end
end

3. Visit the authors.xml page and examine the results of the transformation: The resulting XML is also
valid HTML.

4. Modify loadAuthors.html to use loadAuthorsXLS.js

5. Examine loadAuthorsXLS.js

This file is nearly identical to loadAuthorsXML.js . The main differences are that (a) we no longer
need xmlToAuthors (the XSLT already performed the transformation), and (b) insertAuthors is
much simpler: We need only insert the HTML into the DOM. (This mention could reasonably be written
using one long line of code.)

1. Modify loadAuthors.html to use loadAuthorsJSON.js

2. Examine loadAuthorsJSON.js

This file is nearly identical to loadAuthorsXML.js . The main difference is that we no longer need
xmlToAuthors (the JSON.parse converts the AJAX response to an array of JavaScript objects).

JSON

