
CSS
Cascading Style Sheets

Originally prepared by Prof. Engelsma

History

• HTML originally for structure only and did not
have any format tags.
o HTML 3.2 added a bunch of formatting tags, such as

. They had to be added to every page and
became a big nightmare from a maintenance
perspective.

• W3C created CSS to respond to the problem,
and in HTML 4.0 all format tags were
removed. Format info is now included in
CSS.

Introduction
•CSS makes HTML pretty
•Three ways to attach style to HTML

1.Use the style attribute: <p style="color:
blue">...

2.Use an internal style sheet defined in the HTML
<HEAD> element: <style>
p { color: blue; }

</style>

3.Use an external style sheet:<link rel="stylesheet"
type="text/css" href="someURL" />

type=“text/css” is no longer necessary.

CSS Syntax

CSS Format
•A stylesheet is a collection of styles
•A style is a selector followed by a list of properties

inside curly braces separated with semicolons
•Uses C-style comments
•Simple case: selector is the name of an HTML

element

/* Style for the body */
body { font-size: 0.8em; color: green; }

What does “Cascading” mean?

• If multiple style specification approaches are
used (inside HTML element, inline in <head>
or external CSS file) all styles cascade into
one.

• Cascading order:
1. Browser default
2. External style sheet
3. Internal style sheet
4. Inline style (in HTML element)

Increasing
Priority!

CSS class vs. id

• In addition to using HTML elements as
selectors, we can also use class and id.

• Id: use to specify a style for a unique
element.
o Uses the id attribute of the HTML element and

defined with a #.

• Class: use to specify a style for a group of
elements.
o Uses the class attribute of the HTML element and is

defined with a “.”

Class Selectors Example
•A class defines a style that can be applied to all

elements with a matching class attribute
•Define a class selector:

.important { color: red; font-weight: bold; }•Use it:
<p class="important">this is important</p>

Id Selector Example
•An id refers to exactly one element that has the

matching id attribute
•Define an id selector:

#myheader { font-size: 24pt; font-style: italic; }•Then use it:
<h1 id="myheader">Welcome!</h1>

Combining Styles
•The following style would only apply to important

paragraphs:
p.important { ... }

•Apply common style to several selectors by separating
them with commas

h2, h3, p { color: blue; }
•Apply style to nested elements by separating them

with spaces
.important { color: red; }
.important p { font-size: 12pt; }
.important p b { font-style: italic; }

Using multiple classes
<div class=‘row red’>

2
3
…

</div>
<div class=‘row yellow’>

2
3
…

</div>

.row {
width: 800px;
border-radius: 5px;

}

.red {
background-color: red;

}

.yellow {
background-color: gold;

}

How can we specify the
background color of each block
without having to add a color
class to each span?

Using multiple classes
<div class=‘row red’>

2
3
…

</div>
<div class=‘row yellow’>

2
3
…

</div>

.row {
width: 800px;
border-radius: 5px;

}

…
.red .block {

background-color: pink;
}

.yellow .block {
background-color: white;

}

How can we specify the
background color of each block
without having to add a color
class to each span?

Selector Specificity Weights
•Each CSS selector has a specificity weight which

along with its placement in the cascade identifies
how styles will be rendered:

• Type Selectors:
• (low) weight: 0-0-1

• Class Selectors:
• (medium) weight: 0-1-0

• ID Selectors:
• (high) weight: 1-0-0

•Specificity weights are used to resolve styling
conflicts.

Example

ID selector (food)
has higher weight
than type selector,
so text in
paragraph will be
green, not orange.

Example

.hotdog p:
0-1-1

.hotdog p.mustard:
0-2-1

(first two paragraphs
brown, the third
yellow)

Colors
•Many ways to specify a color

1.name, e.g., blue
2.rgb(red, green, blue), e.g., rgb(0%,0%,100%)
3.rgba(red,green,blue,alpha)

e.g., rgba(120,200,45,.25)
4.hexidecimal (two digits for red, green, and blue),

e.g., #0000ff

Common Properties
•background-color
•background-image
•background-position
•background-repeat
•color
•font-family
•font-size
•font-style
•font-weight
•letter-spacing
•line-height
•text-align

•text-decoration
•text-indent
•text-transform
•word-spacing
•border

Borders
•border-style
•border-width
•border-color
•border
border: 1px blue solid;

Padding and Margins
•margin - sets all four margins (top, right, bottom, left)
•padding - sets all four padding lengths
•Can also use individual properties like margin-left

Borders, Margins, and Padding

From W3C

Width and Height of an Element
div.ex

{

width:320px;

padding:10px;

border:5px solid gray;

margin:2px;

}

• Any div element of class ex will be 354px wide!
o 320px + 20px (left and right padding) + 10px (left and right

margin) + 4px (left + right margin).

• Width only respected by block and inline-block

Display

• Block
o Each element starts a new paragraph

• Inline
o Width and height properties don’t apply
o Margin and padding not used when determining place

of next line.
• Inline-block

o Like a block, but elements don’t begin a new line.

Display vs. visibility

• visibility:hidden keeps the space and
shows nothing:
o Element still affects layout

• display:none behaves as if element isn’t
in the DOM

Position
• absolute - uses the top, bottom, left, and right properties

to place the element in an absolute position
• relative - offsets the element by a given amount. Again,

using the properties top, bottom, left, right. (relative to
normal)

• static - default positioning style, normal flow
• fixed - fixes the element in a position relative to the

browser window, not the web page
o sticky

#footer { position: fixed; bottom: 0; left: 0; }

CSS Units
•px = pixels

• One pixel on the screen … kind of
• Retina displays let you specify the “virtual” resolution
• “Zooming” in the browser also creates a “virtual” resolution.•em = units are relative to the current font size (1em)

•pt = points
•% = percentage of its container/parent element•calc(100% - 50px)

Float
•float - "left" or "right"
•Moves the element to either the left or the right end of

the line and flows content around it•Use the clear ("left", "right", or "both") property to
stop wrapping content from the given side(s)

#sidebar { float: right; }

SASS

• Syntactically Awesome Style Sheets
• Supports two syntaxes SASS and SCSS

o Same engine, different inputs
• Preprocessor for CSS

o (i.e., ‘compiles’ down to CSS)
o Provides helpful features

§ variables
§ nesting
§ importing / mixin / extend

o The above features can be done with CSS, but it is
just more verbose.

SASS vs. SCSS

• SASS syntax
o Older.
o More terse
o Indent/whitespace based
o Similar to .haml

• SCSS syntax
o Newer
o Similar to CSS
o Every CSS file is valid SCSS

Installing / Running SASS

• There are many ways to install/run SASS
o https://sass-lang.com/install

• One common technique
o npm install sass
o ./node_modules/.bin/sass the_file.scss > the_file.css

https://sass-lang.com/install

Flexbox

• https://css-tricks.com/snippets/css/a-guide-to-
flexbox/

https://css-tricks.com/snippets/css/a-guide-to-flexbox/

Reading Assignment

• Complete a CSS Tutorial (as needed):
o https://www.w3schools.com/css/default.asp
o https://learn.shayhowe.com

https://www.w3schools.com/css/default.asp
https://learn.shayhowe.com/

