

 CIS 162 Project 4 – Fall 2018 Page 1 of 8

CIS 162 Project 4

Farkle (a dice game)

Due Date
• at the start of class on Monday, 3 December (be prepared for quick demo and zyBook test)

Before Starting the Project
• Read chapter 10 (ArrayList) and 13 (arrays)

• Read this entire project description before starting

Learning Objectives
After completing this project you should be able to:

• use an ArrayList to store Objects

• use an array to store primitive types

• write looping constructs (for-each and for)

Game Rules
The game supports multiple players using six dice.

• Players accumulate points each turn with the goal of 10,000
• roll all dice to start

• select one or more scoring dice and set them aside (see below)

• choose to pass the dice and bank your points or, choose to roll again and risk losing your
subtotal

• player loses turn and subtotal points (Farkle) if no remaining dice can be scored

• all scoring combinations must be achieved in a single throw

• player can continue to roll if all six dice have been scored

Scoring Categories
Dice values do not need to appear in a particular sequence to qualify for any category.

• Straight using all six dice (1000 pts)

• Three unique pairs (1000 pts)

• Ones (100 pts for each)

• Fives (50 pts for each)

• 3 of a kind (or higher)

Dice Value 3 of a kind 4 of a kind 5 of a kind 6 of a kind

1 1000 2000 3000 4000

2 200 400 600 800

3 300 600 900 1200

4 400 800 1200 1600

5 500 1000 1500 2000

6 600 1200 1800 2400

 CIS 162 Project 4 – Fall 2018 Page 2 of 8

Step 1: GVdie
Rather than writing your own Die class, we are providing a completed class for you. Create a new class

in BlueJ called GVdie and delete all of the provided code. Copy and paste the provided code from

(GVdie.java) into the newly created class. It should compile with no errors. Do not make any

changes to this code.

A GVdie can be in one of three states: 1) selected, 2) scored or 3) available to roll. Dice start as

available to roll. Dice are selected by the player clicking on them and they change color. The game

automatically converts selected to dice and they change to gray. Dice can not be rolled or selected once

they have been scored.

You only need to use the following methods but you are encouraged to read the source code to

understand how it works.
GVdie d1 = new GVdie(); // instantiate a GVdie

d1.roll(); // roll the die (1 – 6)

int val = d1.getValue(); // check current value

d1.setBlank(); // set face to blank (value to 0)

d1.setSelected(true); // mark die as selected (or not)

d1.setScored(true); // mark die as scored (or not)

if(d1.isSelected()) // check if die is selected

if(d1.isScored()) // check if die is scored

Step 2: Player
Use your Player class from Project 3.

Step 3: Create a class called Farkle (60 pts)

Instance Variables

A class should contain several instance variables. Some instance members are not expected to change

after given an initial value. It is good practice to define these as final and use ALL CAPS for the names

(section 11.1). Provide appropriate names and data types for each of the private instance variables:

• an object of type Player that tracks the score and other information for the current player

• an ArrayList of GVdie

• a private final member for the number of dice

• int tally[] - an array of seven integers to keep track of dice values

• declare final members for each scoring category. For example:

 private final int STRAIGHT = 1000;

private final int WINNING_SCORE = 10000;

Constructor

A constructor is a special method with the same name as the class and generally initializes the fields to

appropriate starting values.

• public Farkle() - instantiate the ArrayList and fill it with six GVdie. Remember to

instantiate each GVdie before you add it to the ArrayList. Instantiate the array of seven

integers. Instantiate the player object. Invoke the private resetGame() method. Adapt the

following starter code.

 CIS 162 Project 4 – Fall 2018 Page 3 of 8

 myDice = new ArrayList <GVdie> ();

 tally = new int[7];

 // create dice

 for (int i=1; i<=NUM_DICE; i++){

 myDice.add(new GVdie());

 }

Accessor Methods

An accessor method does not modify class fields. The names for these methods, which simply return

the current value of a field, often begin with the prefix ‘get’.

• public Player getActivePlayer() – return the current player object (one line).

• publc boolean gameOver() - return true if the game is over because the current

player achieved at least 10,000 points. Otherwise, return false.

• public ArrayList <GVdie> getDice () - return the ArrayList of GVdie. This

method is only one line of code and is invoked by the GUI to display the dice.

Helper Methods

Designated as private, a helper method is designed to be used by other methods within the class. Good

practice is to make methods private unless they need to be public.

• private void tallySelectedDice() – Update the array of integers to tally the

number of 1s, 2s, 3s, 4s, 5s and 6s for the selected dice. Index zero of the array is not used.

Remember to clear the array first. Adapt the following sample code.

 // clear array

 for (int i=1; i<tally.length; i++){

 tally[i] = 0;

 }

 // update tally for each selected GVdie

 for (GVdie d : myDice){

 if(d.isSelected()){

 int val = d.getValue();

 tally[val]++;

 }

 }

• private void tallyUnscoredDice() – Update the array of integers to tally the

number of 1s, 2s, 3s, 4s, 5s and 6s for the dice that are not already scored. Remember to clear

the array first.

• private boolean hasStraight() – assume dice have been tallied. Use the tally array

to determine if the six dice contain a straight if each value (1-6) has one die. Return true or

false. No scores are updated.

• private boolean hasThreePairs() – assume dice have been tallied. Use the tally

array to determine if the six dice contain three unique pairs. Return true if they do.

Otherwise, return false. No scores are updated.

• private void nextTurn() – this private helper method prepares for the next round by

setting all dice to unscored, unselected and blank.

 CIS 162 Project 4 – Fall 2018 Page 4 of 8

Mutator Methods

A mutator method performs tasks that may modify class fields. Refer to section 5.7.

• public void resetGame() - reset the player object by invoking its newGame() .

Unselect all dice and set them to blank by invoking nextTurn(). Only two lines of code.

• public void scoreSelectedDice() – first, invoke tallySelectedDice().

Next, check for each scoring category and update the player’s subtotal when appropriate. Refer

to the scoring category definitions at the start of this document. Afterwards, convert all selected

dice to scored. This is a lengthy method! Give thought to the order that you check each category

and test your solution thoroughly.

• public void rollDice() – score selected dice by invoking scoreSelectedDice().

If all dice have been scored, reset all dice to unselected and unscored. Roll each die not selected

or scored. You will eventually add more logic to prevent cheating but this will at least make the

game functional.

• public void passDice() – score selected dice by invoking scoreSelectedDice().

Have the player object update its score. Prepare for the next turn by invoking nextTurn().

Only three lines of code.

Step 4: Prevent Cheating (10 pts)
The game will be functional after completing step 3 but the player can cheat in a variety of ways. The

following enhancements will help prevent most cheating.

• Define additional instance variables (boolean) to keep track if the player is allowed to roll,

allowed to pass or if this is the initial roll.

• public boolean okToRoll() - return true if the player is allowed to roll. Otherwise,

return false. One line of code.

• public boolean okToPass() - return true if the player is allowed to pass. Otherwise,

return false. One line of code.

• private boolean noDiceSelected() – return true if no dice are selected.

Otherwise, return false. Recall, dice are either selected, scored or neither.

• public boolean playerFarkled() – invoke tallyUnscoredDice(). Check for

each scoring category to determine if any of the unselected dice could be used for scoring. The

logic is similar to scoreSelectedDice() except no scores are updated. Instead, return

true if no scoring category is possible among the unselected dice.

• Update methods as needed to ensure the state variables variables are correctly set to true or

false throughout the game. For example, nextTurn() should set initial roll to true, OK to

roll should be true and OK to pass should be false. What other methods might need

updating?

Player is always allowed to roll except when no scoring dice remain (Farkled).

Player is always allowed to pass except at the start of a turn.

• Update rollDice() to only roll if it is the player’s initial roll or at least one die is selected.

 CIS 162 Project 4 – Fall 2018 Page 5 of 8

Step 5: Advanced Game Features

Support Multiple Players (5 pts)

You only need to add a few lines of code and one additional method to support multiple players.

• Add an instance field for an array of Player objects.

• Within the constructor, instantiate the players within the array and set the game’s player object to

array element 0. Modify the follow example to use your variable names.
 players = new Player[3];

 players[0] = new Player("Player 1");

 players[1] = new Player("Player 2");

 players[2] = new Player("Player 3");

 thePlayer = players[0];

• public void setActivePlayer(int id) – set the game’s current player object to

array element id - 1. Correct player numbers should be 1 – 3. All future game actions and

scores will relate to the current player.

 thePlayer = players[id - 1];

• Update resetGame() to reset each player in the array rather than the current player. Adapt

the following sample code;
 for(Player p : players){

 p.newGame();

 }

• No additional changes are needed anywhere in your code!

Support Testing (5 pts)

The following methods are provided for external testing only.

• public void setAllDice (int [] values) – pass an array of six integers to set the

dice values. Repeatedly roll each die until the desired value is obtained. If a requested value is

not between 1 and 6 then set it to one. This method can be less than ten lines of code with a

nested loop. Test your solution thoroughly because it plays a critical role in our automated

testing.

• public void selectDie (int id) – set the requested die to selected. Dice are

numbered 1 – 6. For example, selectDie(2) will mark the 2nd die as selected. This method

is one line of code. Recall, ArrayList indices start at zero.

 CIS 162 Project 4 – Fall 2018 Page 6 of 8

Step 6: Best Score (10 pts)

Add a feature for the game to keep track of the player with the best score during the current session. The

best score reflects a score above 10,000 with the fewest number of turns.

• Add another instance member of type Player to store the player with the best score.

• public Player getBestPlayer () – return player with best score (one line).

• public void setBestPlayer(Player p) – set best player (one line). This method is

used during automated testing.

• private void checkBestScore() – check if the winning player used a lower number

of turns than the current best player. Best score is determined by the fewest number of turns,

total score is ignored. Note: this method should only be invoked at the end of a game. So where

would be a good choice within the Farkle class?

Saving Best Score (5 pts)

Add a feature for the best player information to be saved in an external data file. The best player

information including name, score and number of turns is initially read from a file when the game starts

(in the constructor). The updated player information is automatically saved to the data file. Read section

15.3 and refer to class notes. To support our automated testing, name the file bestplayer.txt using

the following format.

Tiger Woods

10400

9

• public void saveBestPlayer() – save player information to data file

• public void loadBestPlayer() – read player information from data file

Coding Style (10 pts)

Good programming practice includes writing elegant source code for the human reader. Follow the

GVSU Java Style Guide.

http://www.cis.gvsu.edu/java-coding-style-guide/

 CIS 162 Project 4 – Fall 2018 Page 7 of 8

Step 7: Software Testing (10 pts)

Write JUnit tests for your Farkle class. Thoroughly testing your code requires a lot (dozens) of test

cases. Don’t try to write them all at the end --- you won’t have enough time. Instead, test the methods as

you write them.

Here are some guidelines to help you write tests:

• Make sure each line of code is run by at least one test

• Make sure each if statement is run by at least two tests: One for which the condition is true, and one

for which it is false.

• Make sure you have a test for each way to score (straight, three pairs, three-of-a-kind, four-of-a-kind,

etc.)

• Also write tests that verify that your code doesn’t incorrectly award points for straights, and such.

 @Test

 public void testSetAllDice() {

 Farkle f = new Farkle();

 int[] expected = {2, 4, 5, 6, 1, 3};

 f.setAllDice(expected);

 int[] observed = new int[expected.length];

 for (int i = 0; i < expected.length; i++) {

 observed[i] = f.getDice().get(i).getValue();

 }

 Assert.assertArrayEquals(expected, observed);

 }

 @Test

 public void correctlyScoresStraight() {

 Farkle f = new Farkle();

 f.setAllDice(new int[]{3, 2, 1, 6, 5, 4});

 for (int i = 1; i <= 6; i++) {

 f.selectDie(i);

 }

 f.scoreSelectedDice();

 Assert.assertEquals(1000, f.getActivePlayer().getSubtotal());

 }

 CIS 162 Project 4 – Fall 2018 Page 8 of 8

zyLab Testing
Upload Farkle.java, Player.java and GVdie.java to Ch 16 zyProject Farkle AFTER you
are absolutely certainly that your code is correct and it passes ALL of your carefully written tests.
You are limited to 10 submissions.

Step 8: GUI
Update FarkleGUI from Project 3. You should not have to change any of your code except the

following:

• Replace the FarkleStub object with Farkle

Thoroughly test your GUI and be prepared to demo to your instructor

Grading Criteria

The project grade is based on the following:

• Program requirements (as specified above)

• Stapled cover page with your name and signed pledge. (-5 pts if missing)

Submission
A professional document is stapled with an attractive cover page. Do not expect the lab to have a

working stapler!

• Cover page - Provide a cover page that includes your name, a title, and a screenshot of your GUI

• Signed Pledge – The cover page must include the following signed pledge: "I pledge that this work is

entirely mine, and mine alone (except for any code provided by my instructor). " In addition,

provide names of any people you helped or received help from. Under no circumstances do you

exchange code electronically. You are responsible for understanding and adhering to the School

of CIS Guidelines for Academic Honesty.

• Time Card – The cover page must also include a brief statement of how much time you spent on the

project. For example, “I spent 7 hours on this project from January 22-27 reading the book,

designing a solution, writing code, fixing errors and putting together the printed document.”

• Sample Output – provide a screenshot of the GUI on your cover page

• Source code - a printout of your elegant source code.

Farkle.java

FarkleTest.java

• Demo – be prepared to demo your project on a lab computer or your laptop. Your instructor will ask

you to perform a variety of tasks using BlueJ. You will also be asked to show your code passing

the tests in zyLab.

Extra Credit: (+10 points)

Modify your GUI and Game class to handle an arbitrary number of players.

http://www.cis.gvsu.edu/academic-honesty/
http://www.cis.gvsu.edu/academic-honesty/

