
	CIS	162	Project	2		 	 	Page	1	of	7	

 CIS 162 Project 2
Self-Pay Kiosk

Section 04 (Kurmas)

Due Date
• at the start of lab on 8 October

Project Summary
Create	a	class	to	simulate	the	functionality	of	a	self-serve	kiosk	at	a	grocery	store.		You	can	
do	simple	things	like	scan	items,	scan	coupons,	make	payments,	and	report	daily	sales.		
Text	messages	are	displayed	on	the	screen	for	customer	feedback.	

Before Starting the Project
• Read sections 5.1 – 5.2
• Read this entire project description before starting

Learning Objectives
After completing this project you should be able to:

• write methods to meet specific requirements
• write conditional statements with boolean expressions
• write loops to solve problems
• explain the differences between local variables, instance variables (class fields) and

method parameters

Class Specification
Create a class with the following class fields and methods. Do not create additional methods or
make any changes to the following requirements. All method names must match exactly with
these instructions for your code to pass the automated testing.

Class Name: SelfPayKiosk

Class Fields
A class usually contains several class fields (section 3.1). Some instance members are not
expected to change after given an initial value. It is good practice to define these as final and use
ALL CAPS for the names (section 7.1). Provide appropriate names and data types for each of
the class fields:

• a double for the amount due that increases as the customer scans items
• a double for the total sales that increases throughout the day
• an integer for the number of customers

	CIS	162	Project	2		 	 	Page	2	of	7	

• a String for the store name
• a final double for the sales tax rate (0.06).
• Create an instance variable of type NumberFormat and instantiate it in the constructor.

Use this object throughout all methods to properly display currency amounts.

The NumberFormat class can be used to display currency numbers as text/strings. It
is not explained in the book but you can find more information in the Java API. The
following example may be enough for you. Feel free to Google more information if
needed.

You must import java.util.Locale;
You must import java.text.NumberFormat;

Code fragment output
NumberFormat fmt = NumberFormat.getCurrencyInstance(Locale.US);
double amount = 3.0111111;
System.out.println("Cost: " + fmt.format(amount)); Cost:$3.01

Constructors
A constructor is a special method with the same name as the class and generally initializes the
fields to appropriate starting values. Refer to sections 3.7 and 3.8.

• public SelfPayKiosk (String name) - initialize the instance variables to zero
and sets the store name to parameter name. Displays a welcome message that includes the
store name.

Welcome to Quick N Easy!

• public SelfPayKiosk () - initialize the instance variables to zero and sets the
store name to “GVSU Corner Store”. Displays a welcome message that includes the
store name.

Accessor Methods
It is good practice to provide accessor methods for most instance members (section 3.6). Some
of these methods are informally called getter methods and allow access to the state of the object.

• public double getTotalSales() - return the total sales for the day.
• public double getAmountDue() - return the current amount due from the

current customer (one simple line of code).
• public int getNumCustomers() - return the number of customers.
• public void reportSales() – display the store name, number of customers,

total sales for the day and average sales for the day. Warning: be careful when
calculating the average if no sales were made.

Scott’s Corner Store
Number of Customers: 2
Daily Sales: $107.06
Average Sales: $53.53

	CIS	162	Project	2		 	 	Page	3	of	7	

Mutator Methods
A mutator method performs tasks that may modify class fields. Refer to section 3.6.

• public void scanItem (double price) - update the amount due only if
parameter price is above zero. Print of one of two messages: 1) price of the item or 2)
an error message. Use the NumberFormat object to correctly display currency values.

1) Price: $24.99
2) Scanning error. Please try again.

• public void checkout () – After the customer has scanned the last item,
calculate the sales tax and add to the amount due. Display the sales tax and amount due.

Sales Tax: $1.20
Amount Due: $24.99

• public void cancelSession () – simulates the customer clicking on a Cancel
button. Set the amount due to zero and display an appropriate message.

Session cancelled

• public void scanCoupon (double value) – a valid coupon must be
between $0 and $2.00. Only if valid, reduce the amount due by the parameter value.
You do not need to plan for the amount due going negative (but you can if you want to).
Print of one of two messages:

1) Credit: $1.99
2) Coupon not valid

• public void resetKiosk(int id) – An employee must provide a special ID to
reset the kiosk (4567). Total sales, amount due and number of customers are reset to
zero. Display one of two messages:

1) Kiosk reset
2) ID not valid

• public void makePayment (double pmt) – simulates customer making a
payment of the amount in parameter pmt.
- If the payment is sufficient: 1) add the amount due to total sales, 2) increase customer

count, 3) reset amount due to zero and 4) display the next welcome message with a
blank line before to visually separate transactions from one customer to the next.

- However, if the payment is not enough, the amount due is reduced and the updated
amount due is displayed. Total sales is also increased by parameter pmt. The
customer can then make a second payment to complete the transaction.

- Display one of four messages.

1) If customer attempts to pays a negative amount

Payment: ($5.00)
Credit card declined

2) If customer pays exact amount

Payment: $5.35
Thank You. Have a nice day!

Welcome to Quick N Easy!

	CIS	162	Project	2		 	 	Page	4	of	7	

3) If customer pays too much

Payment: $5.00
Thank You. Your change is $1.45

Welcome to Quick N Easy!

4) If customer pays too little

Payment: $10.00
Remaining Amount Due: $4.19

Simulation Methods
The following methods allow a programmer to quickly simulate multiple method calls. They are
used for testing and demonstrate an ability to use loops.

• public void simulateCustomer(int items, double price,
double incr) – Use a loop to simulate a customer who scans multiple items, checks
out and makes a payment. The number of items is specified in parameter items. Price
of the first scanned item is parameter price. Each subsequent item increases in price by
parameter incr. For example, the first item might cost $5.00 and the second might be
$5.50 followed by $6.00.
This method can be written in approximately five lines by invoking several methods
within a loop: scanItem(), checkout() and makePayment().

• public void simulateManyCustomers(int customers, int items) -
Use a loop to simulate multiple customers throughout the day. Number of customers is
represented by parameter customers. The first customer purchases a certain number
of items (parameter items). Each subsequent customer purchases one more item than
the prior customer. For example, the first customer might purchase ten items. The
second customer will purchase eleven items. The third customer will purchase twelve
items and so on.

All customers scan their first item at $3.00 and subsequent items increase by $0.35.

This method should be written in approximately four lines by invoking
simulateCustomer()with appropriate parameters within a loop.

Coding Style (10 pts)
Good programming practice includes writing elegant source code for the human reader. Follow
the GVSU Java Style Guide.	
	

	CIS	162	Project	2		 	 	Page	5	of	7	

Software Testing
Software	developers	must	plan	from	the	beginning	that	their	solution	is	correct.		BlueJ	allows	
you	 to	 instantiate	 objects	 and	 invoke	 individual	methods.	 	 You	 can	 carefully	 check	 each	
method	and	compare	actual	results	with	expected	results.	However,	 this	gets	 tedious	and	
cannot	be	automated.			

	
Testing	Your	Class	using	the	main()	method	
Another	approach	is	to	write	a	main	method	that	calls	all	the	other	methods	in	a	carefully	
designed	sequence.		See	section	3.9	in	the	zyBook.			
For	this	project,	write	a	main	method	in	a	new	class	called	KioskTest	that	instantiates	at	
least	 two	 kiosks	 for	 different	 stores	 and	 invokes	 each	 of	 the	 methods	 with	 a	 variety	 of	
parameter	values	to	test	each	method.		Provide	multiple	print	statements	and	if	statements	
to	test	each	method	along	with	error	messages	as	needed.		It	takes	careful	consideration	to	
anticipate	and	test	every	possibility.		
A	brief	and	incomplete	example	is	provided	below.		Your	test	method	should	be	much	longer	
and	instantiate	two	kiosks	for	different	stores.	
 public static void main(String args[]){
 int errors = 0;
 SelfPayKiosk kiosk2 = new SelfPayKiosk();

 // scan first item
 kiosk2.scanItem(10.0);
 if(kiosk2.getAmountDue() != 10.0){
 errors++;
 System.out.println(" ERROR: amount due should be 10.0");
 }

 // finish checking out
 kiosk2.checkout();
 kiosk2.makePayment(11);

 if(kiosk2.getAmountDue() != 0.0){
 errors++;
 System.out.println(" ERROR: amount due should be 0.0");
 }
 if(kiosk2.getNumCustomers() != 1){
 errors++;
 System.out.println(" ERROR: number of customers should be 1");
 }

 System.out.println("Testing Complete. Number of errors: " + errors);
 }

	CIS	162	Project	2		 	 	Page	6	of	7	

Sample Output
The sample main method above will create the following output to the terminal window.
Welcome to GVSU Corner Store!
Price: $10.00

Sales Tax: $0.60
Amount Due: $10.60

Payment: $11.00
Thank You! Your change is $0.40
Welcome to GVSU Corner Store!

Testing Complete. Number of errors: 0

zyLab Testing
After	your	solution	passes	ALL	of	your	tests,	it	is	time	to	compare	against	our	tests.		Copy	
your	code	in	SelfPayKiosk.java	to	the	appropriate	Ch	16	zyLab.		You	may	have	to	
repair	a	few	errors	until	your	solution	passes	all	of	our	tests!			
	

	CIS	162	Project	2		 	 	Page	7	of	7	

Grading Criteria
• Stapled cover page with your name and signed pledge (-5 pts if missing).
• Project requirements as specified above (100 pts).

Late Policy
Projects	are	due	at	the	START	of	the	class	period.	However,	you	are	encouraged	to	
complete	a	project	even	if	you	must	turn	it	in	late.	
• The first 24 hours (-20 pts)
• Each subsequent weekday is an additional -10 pts
• Weekends and university holidays are free days.

Turn In
A	professional	document	is	stapled	with	an	attractive	cover	page.		Do	not	expect	the	lab	to	
have	a	working	stapler!	
• Cover page - Provide a cover page that includes your name, a title, and an appropriate picture

or clip art for the project
• Signed Pledge – The cover page must include the following signed pledge: "I pledge that this

work is entirely mine, and mine alone (except for any code provided by my instructor). "
In addition, provide names of any people you helped or received help from. Under no
circumstances do you exchange code electronically. You are responsible for
understanding and adhering to the School of CIS Guidelines for Academic Honesty.

• Time Card – The cover page must also include a brief statement of how much time you spent
on the project. For example, “I spent 7 hours on this project from January 22-27 reading
the book, designing a solution, writing code, fixing errors and putting together the printed
document.”

• Sample Output – a printout of the BlueJ Terminal window after running the main method that
shows a variety of the printed messages. You can cut and paste into the Word document
that contains your cover page.

• Source code - a printout of your elegant source code printed from BlueJ with line numbers
(with your name):

SelfPayKiosk.java

KioskTest.java

• Demo – be prepared to demo your project on a lab computer or your laptop. Your instructor
will ask you to perform a variety of tasks using BlueJ. You will also be asked to show
your code passing the tests in zyLab.

	

