
Name:________________________________

CS162 Computer Science I Fall 2018
 Practice Exam 1
 DRAFT (9 Oct.)

The real test will look much like this one, but it will be shorter. I suggest taking this practice test under
“real” conditions (closed book, closed note) first, then going back and using your book and notes to
correct your answers. I will grade parts of this test for homework points, then give it back in time for
you to study from it. I strongly suggest that you limit your collaboration.

The real test will be Monday, 15 October.

• Sample short answer essay questions: (you need not turn these in):

o Briefly explain the difference between classes and objects.
o Explain the difference between an actual parameter and a formal parameter
o What does “void” mean.
o What are “scope” and “lifetime” (with respect to Java).
o What is “shadowing” and how does it affect a Java program?

• Review the problems on CodingBat.

1a). Which of the following expressions evaluate to true?

• !(4<5)
• !false
• (2>2) || ((4 == 4) && (1 < 0))
• (2>2) || (4 == 4) && (1 < 0)
• (34 != 33) && !false

1b). Evaluate the following expressions:
 ______ 3 + 4 * 5
 ______ 4 * 5 + 6
 ______ 35 % 7
 ______ 35 % 8
 ______ 5 + 4 % 2
 ______ 5 + 4 % 2 + 3
 ______ “C” + 3 + “PO”
 ______ 7 + 6 + “ Trombones”
 ______ 27 / 4
 ______ 3 + 4 / 5
 ______ 3 + 4 / 5 + 6

2). Complete the method below that calculates how many packages of hot dogs you will use (i.e., open)
and how many hot dogs will be left in an open package. Assume that half the people at your party
(rounded down, if odd) will eat two hot dogs and the rest will eat only one. You may not use any of the
methods in the Math package (e.g., Math.round). Remember how Java handles integer division.

For example, if the input is 50, your output should look like this:

You will use 10 packages and have 5 hot dogs left over.

class HotDogs
{
 public void dogsAndBuns(int people_at_party)
 {
 final int DOGS_PER_PACKAGE = 8;
 // Your code here

 } // end method
} // end class

3). On the back of the previous page, write a Student class that contains the following:

a) Four fields: Strings named firstName and lastName, an int named creditHours,

and a double named qualityPoints
b) A constructor that takes the Student’s names as parameters, but sets creditHours and

qualityPoints to 0.
c) A method named getGPA that takes no parameters and returns the student’s GPA (quality points

divided by credit hours).
d) A method named addClass that takes as parameters the number of hours of the class and the

student’s grade in the class. Update creditHours and qualityPoints accordingly.
e) A method named isOnDeansList that takes no parameters and returns true if the student has a

GPA of 3.0 or more, and returns false otherwise. Do not write code to compute the GPA; use the
existing getGPA() method instead.

Now, follow the directions in the comments below to complete the method testSudentClass.
Note: This method is not part of the Student class.

public void testStudentClass() {

// Declare and create two Student objects using appropriate literal values (i.e., make up data).

// Call the addClass method once for each student using appropriate literal values.

// Print the average of the two students’ GPAs. (Use getGPA, don’t calculate GPA by hand.)

} // end testStudentClass

4). Consider the Date class described below. Then, complete the isWeekend and testDateClass
methods described below. Do not implement the constructor, getDayOfWeek,
daysUntilChristmas, increment, or toString.

class Date {

 public Date(int year, int month, int day) {…}
 public String getDayOfWeek() { … }
 public int daysUntilChristmas() { … }
 public void increment(int numDays) { … };
 public String toString() { … }
}

Write a method named isWeekend that takes no parameters and returns true if the current date is a
Saturday or Sunday.

Complete the method below according to the comments. This method is not part of the Date class.
public void testDateClass()
{
 // Create a Date object using appropriate literal values.

 // Call the Date object’s toString method and print the String returned.

// If it’s Christmas print out “It’s Christmas! If it’s not Christmas, print “I can’t wait” and
// use the daysUntilChristmas and increment methods together to set the date object
// to Christmas.

}

5). For each of the provided terms at the right, circle an example in the code and label it with the
appropriate number. If the term does not apply anywhere in the code on this place, write “none”. Use
pencil, plan ahead, and label neatly! Don’t obscure the code, you’ll need it later.

class MysteryGamePlayer
{
 private int redPoints;

private int bluePoints;
private int greenPoints;

public MysteryGamePlayer(int a, int b)
{
 redPoints = a;
 bluePoints = b;
 greenPoints = 0;
}

public void setGreenPoints(int c)
{
 greenPoints = c;
}

public int getGreenPoints()
{
 return greenPoints;
}

public int method1()
{
 return redPoints - bluePoints + greenPoints;
}

public int method2(int p)
{
 int m1val = method1();
 return m1val + (p – 1)*greenPoints;
}

public void modify(int d, int e)
{
 redPoints = redPoints*d;
 bluePoints = bluePoints*4;
 e = greenPoints;
}

public String toString()
{
 return “rgb points: “ + redPoints + “ “ + bluePoints +
 “ “ + greenPoints;
}

} // end class MysteryGamePlayer

1 – string concatenation
2 – internal method call
3 – field declaration
4 - constructor
5 – conditional stmt
6 – equality operator
7 – formal parameter
8 – external method call
9 – return type
10 – actual parameter
11 – return value
12 – local variable
13 – comment

6). Predict the output of the method playMysteryGame. This code uses the
MysteryGamePlayer class on the previous page. There are no compile errors, or run-time errors.
(If you find one, then I made a mistake when preparing the problem.)

class MysteryGame
{

public void playMysteryGame()
{
 MysteryGamePlayer object1 = new MysteryGamePlayer(1,2);
 System.out.println(“A: “ + object1.method1());

 object1.setGreenPoints(3);
 System.out.println(“B: “ + object1.method1());

System.out.println(“C: “ + object1.method2(2));

 int a = 5;
 int b = 6;
 MysteryGamePlayer object2 = new MysteryGamePlayer(b, a);
 System.out.println(“D: “ + object2.method1());
 object1.setGreenPoints(7);
 System.out.println(“E: “ + object2.method1());

 System.out.println(“F: “ +
 object2.method2(object1.getGreenPoints()));

 int d = 3;
 int e = 4;
 object1.modify(d, d);
 System.out.println(“H: “ + object1.toString());

 object2.modify(object1.method2(e) + d, 0);
 System.out.println(“I: “ + object2.toString());

}

7). Complete the method below that takes all of m1’s green points and gives them to m2.
void giveAndTake(MysteryGamePlayer m1, MysteryGamePlayer m2)
{

}

8). In the state of Georgia, you must use a car (or booster) seat until you are either (1) at least 7 years
old, or (2) weigh at least 70 pounds. Complete the method carSeatRequired below that returns
true if, and only if, the child described still needs a car or booster seat. For example:

• carSeatRequired(8, 65) should return false
• carSeatRequired(8, 75) should return false
• carSeatRequired(6, 65) should return true
• carSeatRequired(6, 75) should return false

public static boolean carSeatRequired(int age, double weight)
{

} // end carSeatRequired

9). Write a line of code that would give different answers if the associativity were left to right instead of
right to left.

10). Write a line of code that would give different answers if the precedence were different.

11). What is “short-circuit evaluation”?

12). Write a line of code that relies on short-circuit evaluation for correct operation.

13). Explain what the following code does in plain English. (Specifically, describe what the method
does as a whole. Don’t describe it line-by-line.)

public static boolean mystery(String str)
{
 int lastIndex = str.length() – 1;
 for (int i = 0; i < str.length() / 2; i++) {
 if (str.charAt(i) != str.charAt(lastIndex -1) {
 return false;
 }
 }
 return true;
}

